blob: dc8fc0836f56333a3c003b41ea1a2a2ff001958d [file] [log] [blame]
// Copyright 2015 The Vanadium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file was auto-generated by the vanadium vdl tool.
// Package: vclock
package vclock
import (
"time"
"v.io/v23/vdl"
vdltime "v.io/v23/vdlroot/time"
)
var _ = __VDLInit() // Must be first; see __VDLInit comments for details.
//////////////////////////////////////////////////
// Type definitions
// VClockData is the persistent state of the Syncbase virtual clock.
// All times are UTC.
type VClockData struct {
// System time at boot.
SystemTimeAtBoot time.Time
// Current estimate of NTP time minus system clock time.
Skew time.Duration
// Elapsed time since boot, as seen by VClockD. Used for detecting reboots.
ElapsedTimeSinceBoot time.Duration
// NTP server timestamp from the most recent NTP sync, or zero value if none.
// Note, the NTP sync may have been performed by some peer device.
LastNtpTs time.Time
// Number of reboots since last NTP sync, accumulated across all hops of p2p
// clock sync. E.g. if LastNtpTs came from some peer device, NumReboots will
// equal that device's NumReboots at the time of sync plus the number of
// reboots on this device since then.
NumReboots uint16
// Number of sync hops between this device and the source of LastNtpTs.
NumHops uint16
}
func (VClockData) __VDLReflect(struct {
Name string `vdl:"v.io/x/ref/services/syncbase/vclock.VClockData"`
}) {
}
func (x VClockData) VDLIsZero() bool {
if !x.SystemTimeAtBoot.IsZero() {
return false
}
if x.Skew != 0 {
return false
}
if x.ElapsedTimeSinceBoot != 0 {
return false
}
if !x.LastNtpTs.IsZero() {
return false
}
if x.NumReboots != 0 {
return false
}
if x.NumHops != 0 {
return false
}
return true
}
func (x VClockData) VDLWrite(enc vdl.Encoder) error {
if err := enc.StartValue(__VDLType_struct_1); err != nil {
return err
}
if !x.SystemTimeAtBoot.IsZero() {
if err := enc.NextField(0); err != nil {
return err
}
var wire vdltime.Time
if err := vdltime.TimeFromNative(&wire, x.SystemTimeAtBoot); err != nil {
return err
}
if err := wire.VDLWrite(enc); err != nil {
return err
}
}
if x.Skew != 0 {
if err := enc.NextField(1); err != nil {
return err
}
var wire vdltime.Duration
if err := vdltime.DurationFromNative(&wire, x.Skew); err != nil {
return err
}
if err := wire.VDLWrite(enc); err != nil {
return err
}
}
if x.ElapsedTimeSinceBoot != 0 {
if err := enc.NextField(2); err != nil {
return err
}
var wire vdltime.Duration
if err := vdltime.DurationFromNative(&wire, x.ElapsedTimeSinceBoot); err != nil {
return err
}
if err := wire.VDLWrite(enc); err != nil {
return err
}
}
if !x.LastNtpTs.IsZero() {
if err := enc.NextField(3); err != nil {
return err
}
var wire vdltime.Time
if err := vdltime.TimeFromNative(&wire, x.LastNtpTs); err != nil {
return err
}
if err := wire.VDLWrite(enc); err != nil {
return err
}
}
if x.NumReboots != 0 {
if err := enc.NextFieldValueUint(4, vdl.Uint16Type, uint64(x.NumReboots)); err != nil {
return err
}
}
if x.NumHops != 0 {
if err := enc.NextFieldValueUint(5, vdl.Uint16Type, uint64(x.NumHops)); err != nil {
return err
}
}
if err := enc.NextField(-1); err != nil {
return err
}
return enc.FinishValue()
}
func (x *VClockData) VDLRead(dec vdl.Decoder) error {
*x = VClockData{}
if err := dec.StartValue(__VDLType_struct_1); err != nil {
return err
}
decType := dec.Type()
for {
index, err := dec.NextField()
switch {
case err != nil:
return err
case index == -1:
return dec.FinishValue()
}
if decType != __VDLType_struct_1 {
index = __VDLType_struct_1.FieldIndexByName(decType.Field(index).Name)
if index == -1 {
if err := dec.SkipValue(); err != nil {
return err
}
continue
}
}
switch index {
case 0:
var wire vdltime.Time
if err := wire.VDLRead(dec); err != nil {
return err
}
if err := vdltime.TimeToNative(wire, &x.SystemTimeAtBoot); err != nil {
return err
}
case 1:
var wire vdltime.Duration
if err := wire.VDLRead(dec); err != nil {
return err
}
if err := vdltime.DurationToNative(wire, &x.Skew); err != nil {
return err
}
case 2:
var wire vdltime.Duration
if err := wire.VDLRead(dec); err != nil {
return err
}
if err := vdltime.DurationToNative(wire, &x.ElapsedTimeSinceBoot); err != nil {
return err
}
case 3:
var wire vdltime.Time
if err := wire.VDLRead(dec); err != nil {
return err
}
if err := vdltime.TimeToNative(wire, &x.LastNtpTs); err != nil {
return err
}
case 4:
switch value, err := dec.ReadValueUint(16); {
case err != nil:
return err
default:
x.NumReboots = uint16(value)
}
case 5:
switch value, err := dec.ReadValueUint(16); {
case err != nil:
return err
default:
x.NumHops = uint16(value)
}
}
}
}
// Hold type definitions in package-level variables, for better performance.
var (
__VDLType_struct_1 *vdl.Type
__VDLType_struct_2 *vdl.Type
__VDLType_struct_3 *vdl.Type
)
var __VDLInitCalled bool
// __VDLInit performs vdl initialization. It is safe to call multiple times.
// If you have an init ordering issue, just insert the following line verbatim
// into your source files in this package, right after the "package foo" clause:
//
// var _ = __VDLInit()
//
// The purpose of this function is to ensure that vdl initialization occurs in
// the right order, and very early in the init sequence. In particular, vdl
// registration and package variable initialization needs to occur before
// functions like vdl.TypeOf will work properly.
//
// This function returns a dummy value, so that it can be used to initialize the
// first var in the file, to take advantage of Go's defined init order.
func __VDLInit() struct{} {
if __VDLInitCalled {
return struct{}{}
}
__VDLInitCalled = true
// Register types.
vdl.Register((*VClockData)(nil))
// Initialize type definitions.
__VDLType_struct_1 = vdl.TypeOf((*VClockData)(nil)).Elem()
__VDLType_struct_2 = vdl.TypeOf((*vdltime.Time)(nil)).Elem()
__VDLType_struct_3 = vdl.TypeOf((*vdltime.Duration)(nil)).Elem()
return struct{}{}
}