| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| /** \mainpage V8 API Reference Guide |
| * |
| * V8 is Google's open source JavaScript engine. |
| * |
| * This set of documents provides reference material generated from the |
| * V8 header file, include/v8.h. |
| * |
| * For other documentation see http://code.google.com/apis/v8/ |
| */ |
| |
| #ifndef V8_H_ |
| #define V8_H_ |
| |
| #include "v8stdint.h" |
| |
| #ifdef _WIN32 |
| |
| // Setup for Windows DLL export/import. When building the V8 DLL the |
| // BUILDING_V8_SHARED needs to be defined. When building a program which uses |
| // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8 |
| // static library or building a program which uses the V8 static library neither |
| // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined. |
| #if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED) |
| #error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\ |
| build configuration to ensure that at most one of these is set |
| #endif |
| |
| #ifdef BUILDING_V8_SHARED |
| #define V8EXPORT __declspec(dllexport) |
| #elif USING_V8_SHARED |
| #define V8EXPORT __declspec(dllimport) |
| #else |
| #define V8EXPORT |
| #endif // BUILDING_V8_SHARED |
| |
| #else // _WIN32 |
| |
| // Setup for Linux shared library export. |
| #if defined(__GNUC__) && ((__GNUC__ >= 4) || \ |
| (__GNUC__ == 3 && __GNUC_MINOR__ >= 3)) && defined(V8_SHARED) |
| #ifdef BUILDING_V8_SHARED |
| #define V8EXPORT __attribute__ ((visibility("default"))) |
| #else |
| #define V8EXPORT |
| #endif |
| #else |
| #define V8EXPORT |
| #endif |
| |
| #endif // _WIN32 |
| |
| /** |
| * The v8 JavaScript engine. |
| */ |
| namespace v8 { |
| |
| class Context; |
| class String; |
| class StringObject; |
| class Value; |
| class Utils; |
| class Number; |
| class NumberObject; |
| class Object; |
| class Array; |
| class Int32; |
| class Uint32; |
| class External; |
| class Primitive; |
| class Boolean; |
| class BooleanObject; |
| class Integer; |
| class Function; |
| class Date; |
| class ImplementationUtilities; |
| class Signature; |
| class AccessorSignature; |
| template <class T> class Handle; |
| template <class T> class Local; |
| template <class T> class Persistent; |
| class FunctionTemplate; |
| class ObjectTemplate; |
| class Data; |
| class AccessorInfo; |
| class StackTrace; |
| class StackFrame; |
| class Isolate; |
| |
| namespace internal { |
| |
| class Arguments; |
| class Object; |
| class Heap; |
| class HeapObject; |
| class Isolate; |
| } |
| |
| |
| // --- Weak Handles --- |
| |
| |
| /** |
| * A weak reference callback function. |
| * |
| * This callback should either explicitly invoke Dispose on |object| if |
| * V8 wrapper is not needed anymore, or 'revive' it by invocation of MakeWeak. |
| * |
| * \param object the weak global object to be reclaimed by the garbage collector |
| * \param parameter the value passed in when making the weak global object |
| */ |
| typedef void (*WeakReferenceCallback)(Persistent<Value> object, |
| void* parameter); |
| |
| |
| // --- Handles --- |
| |
| #define TYPE_CHECK(T, S) \ |
| while (false) { \ |
| *(static_cast<T* volatile*>(0)) = static_cast<S*>(0); \ |
| } |
| |
| /** |
| * An object reference managed by the v8 garbage collector. |
| * |
| * All objects returned from v8 have to be tracked by the garbage |
| * collector so that it knows that the objects are still alive. Also, |
| * because the garbage collector may move objects, it is unsafe to |
| * point directly to an object. Instead, all objects are stored in |
| * handles which are known by the garbage collector and updated |
| * whenever an object moves. Handles should always be passed by value |
| * (except in cases like out-parameters) and they should never be |
| * allocated on the heap. |
| * |
| * There are two types of handles: local and persistent handles. |
| * Local handles are light-weight and transient and typically used in |
| * local operations. They are managed by HandleScopes. Persistent |
| * handles can be used when storing objects across several independent |
| * operations and have to be explicitly deallocated when they're no |
| * longer used. |
| * |
| * It is safe to extract the object stored in the handle by |
| * dereferencing the handle (for instance, to extract the Object* from |
| * a Handle<Object>); the value will still be governed by a handle |
| * behind the scenes and the same rules apply to these values as to |
| * their handles. |
| */ |
| template <class T> class Handle { |
| public: |
| /** |
| * Creates an empty handle. |
| */ |
| inline Handle() : val_(0) {} |
| |
| /** |
| * Creates a new handle for the specified value. |
| */ |
| inline explicit Handle(T* val) : val_(val) {} |
| |
| /** |
| * Creates a handle for the contents of the specified handle. This |
| * constructor allows you to pass handles as arguments by value and |
| * to assign between handles. However, if you try to assign between |
| * incompatible handles, for instance from a Handle<String> to a |
| * Handle<Number> it will cause a compile-time error. Assigning |
| * between compatible handles, for instance assigning a |
| * Handle<String> to a variable declared as Handle<Value>, is legal |
| * because String is a subclass of Value. |
| */ |
| template <class S> inline Handle(Handle<S> that) |
| : val_(reinterpret_cast<T*>(*that)) { |
| /** |
| * This check fails when trying to convert between incompatible |
| * handles. For example, converting from a Handle<String> to a |
| * Handle<Number>. |
| */ |
| TYPE_CHECK(T, S); |
| } |
| |
| /** |
| * Returns true if the handle is empty. |
| */ |
| inline bool IsEmpty() const { return val_ == 0; } |
| |
| /** |
| * Sets the handle to be empty. IsEmpty() will then return true. |
| */ |
| inline void Clear() { val_ = 0; } |
| |
| inline T* operator->() const { return val_; } |
| |
| inline T* operator*() const { return val_; } |
| |
| /** |
| * Checks whether two handles are the same. |
| * Returns true if both are empty, or if the objects |
| * to which they refer are identical. |
| * The handles' references are not checked. |
| */ |
| template <class S> inline bool operator==(Handle<S> that) const { |
| internal::Object** a = reinterpret_cast<internal::Object**>(**this); |
| internal::Object** b = reinterpret_cast<internal::Object**>(*that); |
| if (a == 0) return b == 0; |
| if (b == 0) return false; |
| return *a == *b; |
| } |
| |
| /** |
| * Checks whether two handles are different. |
| * Returns true if only one of the handles is empty, or if |
| * the objects to which they refer are different. |
| * The handles' references are not checked. |
| */ |
| template <class S> inline bool operator!=(Handle<S> that) const { |
| return !operator==(that); |
| } |
| |
| template <class S> static inline Handle<T> Cast(Handle<S> that) { |
| #ifdef V8_ENABLE_CHECKS |
| // If we're going to perform the type check then we have to check |
| // that the handle isn't empty before doing the checked cast. |
| if (that.IsEmpty()) return Handle<T>(); |
| #endif |
| return Handle<T>(T::Cast(*that)); |
| } |
| |
| template <class S> inline Handle<S> As() { |
| return Handle<S>::Cast(*this); |
| } |
| |
| private: |
| T* val_; |
| }; |
| |
| |
| /** |
| * A light-weight stack-allocated object handle. All operations |
| * that return objects from within v8 return them in local handles. They |
| * are created within HandleScopes, and all local handles allocated within a |
| * handle scope are destroyed when the handle scope is destroyed. Hence it |
| * is not necessary to explicitly deallocate local handles. |
| */ |
| template <class T> class Local : public Handle<T> { |
| public: |
| inline Local(); |
| template <class S> inline Local(Local<S> that) |
| : Handle<T>(reinterpret_cast<T*>(*that)) { |
| /** |
| * This check fails when trying to convert between incompatible |
| * handles. For example, converting from a Handle<String> to a |
| * Handle<Number>. |
| */ |
| TYPE_CHECK(T, S); |
| } |
| template <class S> inline Local(S* that) : Handle<T>(that) { } |
| template <class S> static inline Local<T> Cast(Local<S> that) { |
| #ifdef V8_ENABLE_CHECKS |
| // If we're going to perform the type check then we have to check |
| // that the handle isn't empty before doing the checked cast. |
| if (that.IsEmpty()) return Local<T>(); |
| #endif |
| return Local<T>(T::Cast(*that)); |
| } |
| |
| template <class S> inline Local<S> As() { |
| return Local<S>::Cast(*this); |
| } |
| |
| /** Create a local handle for the content of another handle. |
| * The referee is kept alive by the local handle even when |
| * the original handle is destroyed/disposed. |
| */ |
| inline static Local<T> New(Handle<T> that); |
| }; |
| |
| |
| /** |
| * An object reference that is independent of any handle scope. Where |
| * a Local handle only lives as long as the HandleScope in which it was |
| * allocated, a Persistent handle remains valid until it is explicitly |
| * disposed. |
| * |
| * A persistent handle contains a reference to a storage cell within |
| * the v8 engine which holds an object value and which is updated by |
| * the garbage collector whenever the object is moved. A new storage |
| * cell can be created using Persistent::New and existing handles can |
| * be disposed using Persistent::Dispose. Since persistent handles |
| * are passed by value you may have many persistent handle objects |
| * that point to the same storage cell. For instance, if you pass a |
| * persistent handle as an argument to a function you will not get two |
| * different storage cells but rather two references to the same |
| * storage cell. |
| */ |
| template <class T> class Persistent : public Handle<T> { |
| public: |
| /** |
| * Creates an empty persistent handle that doesn't point to any |
| * storage cell. |
| */ |
| inline Persistent(); |
| |
| /** |
| * Creates a persistent handle for the same storage cell as the |
| * specified handle. This constructor allows you to pass persistent |
| * handles as arguments by value and to assign between persistent |
| * handles. However, attempting to assign between incompatible |
| * persistent handles, for instance from a Persistent<String> to a |
| * Persistent<Number> will cause a compile-time error. Assigning |
| * between compatible persistent handles, for instance assigning a |
| * Persistent<String> to a variable declared as Persistent<Value>, |
| * is allowed as String is a subclass of Value. |
| */ |
| template <class S> inline Persistent(Persistent<S> that) |
| : Handle<T>(reinterpret_cast<T*>(*that)) { |
| /** |
| * This check fails when trying to convert between incompatible |
| * handles. For example, converting from a Handle<String> to a |
| * Handle<Number>. |
| */ |
| TYPE_CHECK(T, S); |
| } |
| |
| template <class S> inline Persistent(S* that) : Handle<T>(that) { } |
| |
| /** |
| * "Casts" a plain handle which is known to be a persistent handle |
| * to a persistent handle. |
| */ |
| template <class S> explicit inline Persistent(Handle<S> that) |
| : Handle<T>(*that) { } |
| |
| template <class S> static inline Persistent<T> Cast(Persistent<S> that) { |
| #ifdef V8_ENABLE_CHECKS |
| // If we're going to perform the type check then we have to check |
| // that the handle isn't empty before doing the checked cast. |
| if (that.IsEmpty()) return Persistent<T>(); |
| #endif |
| return Persistent<T>(T::Cast(*that)); |
| } |
| |
| template <class S> inline Persistent<S> As() { |
| return Persistent<S>::Cast(*this); |
| } |
| |
| /** |
| * Creates a new persistent handle for an existing local or |
| * persistent handle. |
| */ |
| inline static Persistent<T> New(Handle<T> that); |
| |
| /** |
| * Releases the storage cell referenced by this persistent handle. |
| * Does not remove the reference to the cell from any handles. |
| * This handle's reference, and any other references to the storage |
| * cell remain and IsEmpty will still return false. |
| */ |
| inline void Dispose(); |
| |
| /** |
| * Make the reference to this object weak. When only weak handles |
| * refer to the object, the garbage collector will perform a |
| * callback to the given V8::WeakReferenceCallback function, passing |
| * it the object reference and the given parameters. |
| */ |
| inline void MakeWeak(void* parameters, WeakReferenceCallback callback); |
| |
| /** Clears the weak reference to this object. */ |
| inline void ClearWeak(); |
| |
| /** |
| * Marks the reference to this object independent. Garbage collector |
| * is free to ignore any object groups containing this object. |
| * Weak callback for an independent handle should not |
| * assume that it will be preceded by a global GC prologue callback |
| * or followed by a global GC epilogue callback. |
| */ |
| inline void MarkIndependent(); |
| |
| /** Returns true if this handle was previously marked as independent. */ |
| inline bool IsIndependent() const; |
| |
| /** Checks if the handle holds the only reference to an object. */ |
| inline bool IsNearDeath() const; |
| |
| /** Returns true if the handle's reference is weak. */ |
| inline bool IsWeak() const; |
| |
| /** |
| * Assigns a wrapper class ID to the handle. See RetainedObjectInfo |
| * interface description in v8-profiler.h for details. |
| */ |
| inline void SetWrapperClassId(uint16_t class_id); |
| |
| /** |
| * Returns the class ID previously assigned to this handle or 0 if no class |
| * ID was previously assigned. |
| */ |
| inline uint16_t WrapperClassId() const; |
| |
| private: |
| friend class ImplementationUtilities; |
| friend class ObjectTemplate; |
| }; |
| |
| |
| /** |
| * A stack-allocated class that governs a number of local handles. |
| * After a handle scope has been created, all local handles will be |
| * allocated within that handle scope until either the handle scope is |
| * deleted or another handle scope is created. If there is already a |
| * handle scope and a new one is created, all allocations will take |
| * place in the new handle scope until it is deleted. After that, |
| * new handles will again be allocated in the original handle scope. |
| * |
| * After the handle scope of a local handle has been deleted the |
| * garbage collector will no longer track the object stored in the |
| * handle and may deallocate it. The behavior of accessing a handle |
| * for which the handle scope has been deleted is undefined. |
| */ |
| class V8EXPORT HandleScope { |
| public: |
| HandleScope(); |
| |
| ~HandleScope(); |
| |
| /** |
| * Closes the handle scope and returns the value as a handle in the |
| * previous scope, which is the new current scope after the call. |
| */ |
| template <class T> Local<T> Close(Handle<T> value); |
| |
| /** |
| * Counts the number of allocated handles. |
| */ |
| static int NumberOfHandles(); |
| |
| /** |
| * Creates a new handle with the given value. |
| */ |
| static internal::Object** CreateHandle(internal::Object* value); |
| // Faster version, uses HeapObject to obtain the current Isolate. |
| static internal::Object** CreateHandle(internal::HeapObject* value); |
| |
| private: |
| // Make it impossible to create heap-allocated or illegal handle |
| // scopes by disallowing certain operations. |
| HandleScope(const HandleScope&); |
| void operator=(const HandleScope&); |
| void* operator new(size_t size); |
| void operator delete(void*, size_t); |
| |
| // This Data class is accessible internally as HandleScopeData through a |
| // typedef in the ImplementationUtilities class. |
| class V8EXPORT Data { |
| public: |
| internal::Object** next; |
| internal::Object** limit; |
| int level; |
| inline void Initialize() { |
| next = limit = NULL; |
| level = 0; |
| } |
| }; |
| |
| void Leave(); |
| |
| internal::Isolate* isolate_; |
| internal::Object** prev_next_; |
| internal::Object** prev_limit_; |
| |
| // Allow for the active closing of HandleScopes which allows to pass a handle |
| // from the HandleScope being closed to the next top most HandleScope. |
| bool is_closed_; |
| internal::Object** RawClose(internal::Object** value); |
| |
| friend class ImplementationUtilities; |
| }; |
| |
| |
| // --- Special objects --- |
| |
| |
| /** |
| * The superclass of values and API object templates. |
| */ |
| class V8EXPORT Data { |
| private: |
| Data(); |
| }; |
| |
| |
| /** |
| * Pre-compilation data that can be associated with a script. This |
| * data can be calculated for a script in advance of actually |
| * compiling it, and can be stored between compilations. When script |
| * data is given to the compile method compilation will be faster. |
| */ |
| class V8EXPORT ScriptData { // NOLINT |
| public: |
| virtual ~ScriptData() { } |
| |
| /** |
| * Pre-compiles the specified script (context-independent). |
| * |
| * \param input Pointer to UTF-8 script source code. |
| * \param length Length of UTF-8 script source code. |
| */ |
| static ScriptData* PreCompile(const char* input, int length); |
| |
| /** |
| * Pre-compiles the specified script (context-independent). |
| * |
| * NOTE: Pre-compilation using this method cannot happen on another thread |
| * without using Lockers. |
| * |
| * \param source Script source code. |
| */ |
| static ScriptData* PreCompile(Handle<String> source); |
| |
| /** |
| * Load previous pre-compilation data. |
| * |
| * \param data Pointer to data returned by a call to Data() of a previous |
| * ScriptData. Ownership is not transferred. |
| * \param length Length of data. |
| */ |
| static ScriptData* New(const char* data, int length); |
| |
| /** |
| * Returns the length of Data(). |
| */ |
| virtual int Length() = 0; |
| |
| /** |
| * Returns a serialized representation of this ScriptData that can later be |
| * passed to New(). NOTE: Serialized data is platform-dependent. |
| */ |
| virtual const char* Data() = 0; |
| |
| /** |
| * Returns true if the source code could not be parsed. |
| */ |
| virtual bool HasError() = 0; |
| }; |
| |
| |
| /** |
| * The origin, within a file, of a script. |
| */ |
| class ScriptOrigin { |
| public: |
| inline ScriptOrigin( |
| Handle<Value> resource_name, |
| Handle<Integer> resource_line_offset = Handle<Integer>(), |
| Handle<Integer> resource_column_offset = Handle<Integer>()) |
| : resource_name_(resource_name), |
| resource_line_offset_(resource_line_offset), |
| resource_column_offset_(resource_column_offset) { } |
| inline Handle<Value> ResourceName() const; |
| inline Handle<Integer> ResourceLineOffset() const; |
| inline Handle<Integer> ResourceColumnOffset() const; |
| private: |
| Handle<Value> resource_name_; |
| Handle<Integer> resource_line_offset_; |
| Handle<Integer> resource_column_offset_; |
| }; |
| |
| |
| /** |
| * A compiled JavaScript script. |
| */ |
| class V8EXPORT Script { |
| public: |
| /** |
| * Compiles the specified script (context-independent). |
| * |
| * \param source Script source code. |
| * \param origin Script origin, owned by caller, no references are kept |
| * when New() returns |
| * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile() |
| * using pre_data speeds compilation if it's done multiple times. |
| * Owned by caller, no references are kept when New() returns. |
| * \param script_data Arbitrary data associated with script. Using |
| * this has same effect as calling SetData(), but allows data to be |
| * available to compile event handlers. |
| * \return Compiled script object (context independent; when run it |
| * will use the currently entered context). |
| */ |
| static Local<Script> New(Handle<String> source, |
| ScriptOrigin* origin = NULL, |
| ScriptData* pre_data = NULL, |
| Handle<String> script_data = Handle<String>()); |
| |
| /** |
| * Compiles the specified script using the specified file name |
| * object (typically a string) as the script's origin. |
| * |
| * \param source Script source code. |
| * \param file_name file name object (typically a string) to be used |
| * as the script's origin. |
| * \return Compiled script object (context independent; when run it |
| * will use the currently entered context). |
| */ |
| static Local<Script> New(Handle<String> source, |
| Handle<Value> file_name); |
| |
| /** |
| * Compiles the specified script (bound to current context). |
| * |
| * \param source Script source code. |
| * \param origin Script origin, owned by caller, no references are kept |
| * when Compile() returns |
| * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile() |
| * using pre_data speeds compilation if it's done multiple times. |
| * Owned by caller, no references are kept when Compile() returns. |
| * \param script_data Arbitrary data associated with script. Using |
| * this has same effect as calling SetData(), but makes data available |
| * earlier (i.e. to compile event handlers). |
| * \return Compiled script object, bound to the context that was active |
| * when this function was called. When run it will always use this |
| * context. |
| */ |
| static Local<Script> Compile(Handle<String> source, |
| ScriptOrigin* origin = NULL, |
| ScriptData* pre_data = NULL, |
| Handle<String> script_data = Handle<String>()); |
| |
| /** |
| * Compiles the specified script using the specified file name |
| * object (typically a string) as the script's origin. |
| * |
| * \param source Script source code. |
| * \param file_name File name to use as script's origin |
| * \param script_data Arbitrary data associated with script. Using |
| * this has same effect as calling SetData(), but makes data available |
| * earlier (i.e. to compile event handlers). |
| * \return Compiled script object, bound to the context that was active |
| * when this function was called. When run it will always use this |
| * context. |
| */ |
| static Local<Script> Compile(Handle<String> source, |
| Handle<Value> file_name, |
| Handle<String> script_data = Handle<String>()); |
| |
| /** |
| * Runs the script returning the resulting value. If the script is |
| * context independent (created using ::New) it will be run in the |
| * currently entered context. If it is context specific (created |
| * using ::Compile) it will be run in the context in which it was |
| * compiled. |
| */ |
| Local<Value> Run(); |
| |
| /** |
| * Returns the script id value. |
| */ |
| Local<Value> Id(); |
| |
| /** |
| * Associate an additional data object with the script. This is mainly used |
| * with the debugger as this data object is only available through the |
| * debugger API. |
| */ |
| void SetData(Handle<String> data); |
| }; |
| |
| |
| /** |
| * An error message. |
| */ |
| class V8EXPORT Message { |
| public: |
| Local<String> Get() const; |
| Local<String> GetSourceLine() const; |
| |
| /** |
| * Returns the resource name for the script from where the function causing |
| * the error originates. |
| */ |
| Handle<Value> GetScriptResourceName() const; |
| |
| /** |
| * Returns the resource data for the script from where the function causing |
| * the error originates. |
| */ |
| Handle<Value> GetScriptData() const; |
| |
| /** |
| * Exception stack trace. By default stack traces are not captured for |
| * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows |
| * to change this option. |
| */ |
| Handle<StackTrace> GetStackTrace() const; |
| |
| /** |
| * Returns the number, 1-based, of the line where the error occurred. |
| */ |
| int GetLineNumber() const; |
| |
| /** |
| * Returns the index within the script of the first character where |
| * the error occurred. |
| */ |
| int GetStartPosition() const; |
| |
| /** |
| * Returns the index within the script of the last character where |
| * the error occurred. |
| */ |
| int GetEndPosition() const; |
| |
| /** |
| * Returns the index within the line of the first character where |
| * the error occurred. |
| */ |
| int GetStartColumn() const; |
| |
| /** |
| * Returns the index within the line of the last character where |
| * the error occurred. |
| */ |
| int GetEndColumn() const; |
| |
| // TODO(1245381): Print to a string instead of on a FILE. |
| static void PrintCurrentStackTrace(FILE* out); |
| |
| static const int kNoLineNumberInfo = 0; |
| static const int kNoColumnInfo = 0; |
| }; |
| |
| |
| /** |
| * Representation of a JavaScript stack trace. The information collected is a |
| * snapshot of the execution stack and the information remains valid after |
| * execution continues. |
| */ |
| class V8EXPORT StackTrace { |
| public: |
| /** |
| * Flags that determine what information is placed captured for each |
| * StackFrame when grabbing the current stack trace. |
| */ |
| enum StackTraceOptions { |
| kLineNumber = 1, |
| kColumnOffset = 1 << 1 | kLineNumber, |
| kScriptName = 1 << 2, |
| kFunctionName = 1 << 3, |
| kIsEval = 1 << 4, |
| kIsConstructor = 1 << 5, |
| kScriptNameOrSourceURL = 1 << 6, |
| kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName, |
| kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL |
| }; |
| |
| /** |
| * Returns a StackFrame at a particular index. |
| */ |
| Local<StackFrame> GetFrame(uint32_t index) const; |
| |
| /** |
| * Returns the number of StackFrames. |
| */ |
| int GetFrameCount() const; |
| |
| /** |
| * Returns StackTrace as a v8::Array that contains StackFrame objects. |
| */ |
| Local<Array> AsArray(); |
| |
| /** |
| * Grab a snapshot of the current JavaScript execution stack. |
| * |
| * \param frame_limit The maximum number of stack frames we want to capture. |
| * \param options Enumerates the set of things we will capture for each |
| * StackFrame. |
| */ |
| static Local<StackTrace> CurrentStackTrace( |
| int frame_limit, |
| StackTraceOptions options = kOverview); |
| }; |
| |
| |
| /** |
| * A single JavaScript stack frame. |
| */ |
| class V8EXPORT StackFrame { |
| public: |
| /** |
| * Returns the number, 1-based, of the line for the associate function call. |
| * This method will return Message::kNoLineNumberInfo if it is unable to |
| * retrieve the line number, or if kLineNumber was not passed as an option |
| * when capturing the StackTrace. |
| */ |
| int GetLineNumber() const; |
| |
| /** |
| * Returns the 1-based column offset on the line for the associated function |
| * call. |
| * This method will return Message::kNoColumnInfo if it is unable to retrieve |
| * the column number, or if kColumnOffset was not passed as an option when |
| * capturing the StackTrace. |
| */ |
| int GetColumn() const; |
| |
| /** |
| * Returns the name of the resource that contains the script for the |
| * function for this StackFrame. |
| */ |
| Local<String> GetScriptName() const; |
| |
| /** |
| * Returns the name of the resource that contains the script for the |
| * function for this StackFrame or sourceURL value if the script name |
| * is undefined and its source ends with //@ sourceURL=... string. |
| */ |
| Local<String> GetScriptNameOrSourceURL() const; |
| |
| /** |
| * Returns the name of the function associated with this stack frame. |
| */ |
| Local<String> GetFunctionName() const; |
| |
| /** |
| * Returns whether or not the associated function is compiled via a call to |
| * eval(). |
| */ |
| bool IsEval() const; |
| |
| /** |
| * Returns whether or not the associated function is called as a |
| * constructor via "new". |
| */ |
| bool IsConstructor() const; |
| }; |
| |
| |
| // --- Value --- |
| |
| |
| /** |
| * The superclass of all JavaScript values and objects. |
| */ |
| class Value : public Data { |
| public: |
| /** |
| * Returns true if this value is the undefined value. See ECMA-262 |
| * 4.3.10. |
| */ |
| inline bool IsUndefined() const; |
| |
| /** |
| * Returns true if this value is the null value. See ECMA-262 |
| * 4.3.11. |
| */ |
| inline bool IsNull() const; |
| |
| /** |
| * Returns true if this value is true. |
| */ |
| V8EXPORT bool IsTrue() const; |
| |
| /** |
| * Returns true if this value is false. |
| */ |
| V8EXPORT bool IsFalse() const; |
| |
| /** |
| * Returns true if this value is an instance of the String type. |
| * See ECMA-262 8.4. |
| */ |
| inline bool IsString() const; |
| |
| /** |
| * Returns true if this value is a function. |
| */ |
| V8EXPORT bool IsFunction() const; |
| |
| /** |
| * Returns true if this value is an array. |
| */ |
| V8EXPORT bool IsArray() const; |
| |
| /** |
| * Returns true if this value is an object. |
| */ |
| V8EXPORT bool IsObject() const; |
| |
| /** |
| * Returns true if this value is boolean. |
| */ |
| V8EXPORT bool IsBoolean() const; |
| |
| /** |
| * Returns true if this value is a number. |
| */ |
| V8EXPORT bool IsNumber() const; |
| |
| /** |
| * Returns true if this value is external. |
| */ |
| V8EXPORT bool IsExternal() const; |
| |
| /** |
| * Returns true if this value is a 32-bit signed integer. |
| */ |
| V8EXPORT bool IsInt32() const; |
| |
| /** |
| * Returns true if this value is a 32-bit unsigned integer. |
| */ |
| V8EXPORT bool IsUint32() const; |
| |
| /** |
| * Returns true if this value is a Date. |
| */ |
| V8EXPORT bool IsDate() const; |
| |
| /** |
| * Returns true if this value is a Boolean object. |
| */ |
| V8EXPORT bool IsBooleanObject() const; |
| |
| /** |
| * Returns true if this value is a Number object. |
| */ |
| V8EXPORT bool IsNumberObject() const; |
| |
| /** |
| * Returns true if this value is a String object. |
| */ |
| V8EXPORT bool IsStringObject() const; |
| |
| /** |
| * Returns true if this value is a NativeError. |
| */ |
| V8EXPORT bool IsNativeError() const; |
| |
| /** |
| * Returns true if this value is a RegExp. |
| */ |
| V8EXPORT bool IsRegExp() const; |
| |
| V8EXPORT Local<Boolean> ToBoolean() const; |
| V8EXPORT Local<Number> ToNumber() const; |
| V8EXPORT Local<String> ToString() const; |
| V8EXPORT Local<String> ToDetailString() const; |
| V8EXPORT Local<Object> ToObject() const; |
| V8EXPORT Local<Integer> ToInteger() const; |
| V8EXPORT Local<Uint32> ToUint32() const; |
| V8EXPORT Local<Int32> ToInt32() const; |
| |
| /** |
| * Attempts to convert a string to an array index. |
| * Returns an empty handle if the conversion fails. |
| */ |
| V8EXPORT Local<Uint32> ToArrayIndex() const; |
| |
| V8EXPORT bool BooleanValue() const; |
| V8EXPORT double NumberValue() const; |
| V8EXPORT int64_t IntegerValue() const; |
| V8EXPORT uint32_t Uint32Value() const; |
| V8EXPORT int32_t Int32Value() const; |
| |
| /** JS == */ |
| V8EXPORT bool Equals(Handle<Value> that) const; |
| V8EXPORT bool StrictEquals(Handle<Value> that) const; |
| |
| private: |
| inline bool QuickIsUndefined() const; |
| inline bool QuickIsNull() const; |
| inline bool QuickIsString() const; |
| V8EXPORT bool FullIsUndefined() const; |
| V8EXPORT bool FullIsNull() const; |
| V8EXPORT bool FullIsString() const; |
| }; |
| |
| |
| /** |
| * The superclass of primitive values. See ECMA-262 4.3.2. |
| */ |
| class Primitive : public Value { }; |
| |
| |
| /** |
| * A primitive boolean value (ECMA-262, 4.3.14). Either the true |
| * or false value. |
| */ |
| class Boolean : public Primitive { |
| public: |
| V8EXPORT bool Value() const; |
| static inline Handle<Boolean> New(bool value); |
| }; |
| |
| |
| /** |
| * A JavaScript string value (ECMA-262, 4.3.17). |
| */ |
| class String : public Primitive { |
| public: |
| enum Encoding { |
| UNKNOWN_ENCODING = 0x1, |
| TWO_BYTE_ENCODING = 0x0, |
| ASCII_ENCODING = 0x4 |
| }; |
| /** |
| * Returns the number of characters in this string. |
| */ |
| V8EXPORT int Length() const; |
| |
| /** |
| * Returns the number of bytes in the UTF-8 encoded |
| * representation of this string. |
| */ |
| V8EXPORT int Utf8Length() const; |
| |
| /** |
| * A fast conservative check for non-ASCII characters. May |
| * return true even for ASCII strings, but if it returns |
| * false you can be sure that all characters are in the range |
| * 0-127. |
| */ |
| V8EXPORT bool MayContainNonAscii() const; |
| |
| /** |
| * Write the contents of the string to an external buffer. |
| * If no arguments are given, expects the buffer to be large |
| * enough to hold the entire string and NULL terminator. Copies |
| * the contents of the string and the NULL terminator into the |
| * buffer. |
| * |
| * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop |
| * before the end of the buffer. |
| * |
| * Copies up to length characters into the output buffer. |
| * Only null-terminates if there is enough space in the buffer. |
| * |
| * \param buffer The buffer into which the string will be copied. |
| * \param start The starting position within the string at which |
| * copying begins. |
| * \param length The number of characters to copy from the string. For |
| * WriteUtf8 the number of bytes in the buffer. |
| * \param nchars_ref The number of characters written, can be NULL. |
| * \param options Various options that might affect performance of this or |
| * subsequent operations. |
| * \return The number of characters copied to the buffer excluding the null |
| * terminator. For WriteUtf8: The number of bytes copied to the buffer |
| * including the null terminator (if written). |
| */ |
| enum WriteOptions { |
| NO_OPTIONS = 0, |
| HINT_MANY_WRITES_EXPECTED = 1, |
| NO_NULL_TERMINATION = 2, |
| PRESERVE_ASCII_NULL = 4 |
| }; |
| |
| // 16-bit character codes. |
| V8EXPORT int Write(uint16_t* buffer, |
| int start = 0, |
| int length = -1, |
| int options = NO_OPTIONS) const; |
| // ASCII characters. |
| V8EXPORT int WriteAscii(char* buffer, |
| int start = 0, |
| int length = -1, |
| int options = NO_OPTIONS) const; |
| // UTF-8 encoded characters. |
| V8EXPORT int WriteUtf8(char* buffer, |
| int length = -1, |
| int* nchars_ref = NULL, |
| int options = NO_OPTIONS) const; |
| |
| /** |
| * A zero length string. |
| */ |
| V8EXPORT static v8::Local<v8::String> Empty(); |
| inline static v8::Local<v8::String> Empty(Isolate* isolate); |
| |
| /** |
| * Returns true if the string is external |
| */ |
| V8EXPORT bool IsExternal() const; |
| |
| /** |
| * Returns true if the string is both external and ASCII |
| */ |
| V8EXPORT bool IsExternalAscii() const; |
| |
| class V8EXPORT ExternalStringResourceBase { // NOLINT |
| public: |
| virtual ~ExternalStringResourceBase() {} |
| |
| protected: |
| ExternalStringResourceBase() {} |
| |
| /** |
| * Internally V8 will call this Dispose method when the external string |
| * resource is no longer needed. The default implementation will use the |
| * delete operator. This method can be overridden in subclasses to |
| * control how allocated external string resources are disposed. |
| */ |
| virtual void Dispose() { delete this; } |
| |
| private: |
| // Disallow copying and assigning. |
| ExternalStringResourceBase(const ExternalStringResourceBase&); |
| void operator=(const ExternalStringResourceBase&); |
| |
| friend class v8::internal::Heap; |
| }; |
| |
| /** |
| * An ExternalStringResource is a wrapper around a two-byte string |
| * buffer that resides outside V8's heap. Implement an |
| * ExternalStringResource to manage the life cycle of the underlying |
| * buffer. Note that the string data must be immutable. |
| */ |
| class V8EXPORT ExternalStringResource |
| : public ExternalStringResourceBase { |
| public: |
| /** |
| * Override the destructor to manage the life cycle of the underlying |
| * buffer. |
| */ |
| virtual ~ExternalStringResource() {} |
| |
| /** |
| * The string data from the underlying buffer. |
| */ |
| virtual const uint16_t* data() const = 0; |
| |
| /** |
| * The length of the string. That is, the number of two-byte characters. |
| */ |
| virtual size_t length() const = 0; |
| |
| protected: |
| ExternalStringResource() {} |
| }; |
| |
| /** |
| * An ExternalAsciiStringResource is a wrapper around an ASCII |
| * string buffer that resides outside V8's heap. Implement an |
| * ExternalAsciiStringResource to manage the life cycle of the |
| * underlying buffer. Note that the string data must be immutable |
| * and that the data must be strict (7-bit) ASCII, not Latin-1 or |
| * UTF-8, which would require special treatment internally in the |
| * engine and, in the case of UTF-8, do not allow efficient indexing. |
| * Use String::New or convert to 16 bit data for non-ASCII. |
| */ |
| |
| class V8EXPORT ExternalAsciiStringResource |
| : public ExternalStringResourceBase { |
| public: |
| /** |
| * Override the destructor to manage the life cycle of the underlying |
| * buffer. |
| */ |
| virtual ~ExternalAsciiStringResource() {} |
| /** The string data from the underlying buffer.*/ |
| virtual const char* data() const = 0; |
| /** The number of ASCII characters in the string.*/ |
| virtual size_t length() const = 0; |
| protected: |
| ExternalAsciiStringResource() {} |
| }; |
| |
| /** |
| * If the string is an external string, return the ExternalStringResourceBase |
| * regardless of the encoding, otherwise return NULL. The encoding of the |
| * string is returned in encoding_out. |
| */ |
| inline ExternalStringResourceBase* GetExternalStringResourceBase( |
| Encoding* encoding_out) const; |
| |
| /** |
| * Get the ExternalStringResource for an external string. Returns |
| * NULL if IsExternal() doesn't return true. |
| */ |
| inline ExternalStringResource* GetExternalStringResource() const; |
| |
| /** |
| * Get the ExternalAsciiStringResource for an external ASCII string. |
| * Returns NULL if IsExternalAscii() doesn't return true. |
| */ |
| V8EXPORT const ExternalAsciiStringResource* GetExternalAsciiStringResource() |
| const; |
| |
| static inline String* Cast(v8::Value* obj); |
| |
| /** |
| * Allocates a new string from either UTF-8 encoded or ASCII data. |
| * The second parameter 'length' gives the buffer length. |
| * If the data is UTF-8 encoded, the caller must |
| * be careful to supply the length parameter. |
| * If it is not given, the function calls |
| * 'strlen' to determine the buffer length, it might be |
| * wrong if 'data' contains a null character. |
| */ |
| V8EXPORT static Local<String> New(const char* data, int length = -1); |
| |
| /** Allocates a new string from 16-bit character codes.*/ |
| V8EXPORT static Local<String> New(const uint16_t* data, int length = -1); |
| |
| /** Creates a symbol. Returns one if it exists already.*/ |
| V8EXPORT static Local<String> NewSymbol(const char* data, int length = -1); |
| |
| /** |
| * Creates a new string by concatenating the left and the right strings |
| * passed in as parameters. |
| */ |
| V8EXPORT static Local<String> Concat(Handle<String> left, |
| Handle<String> right); |
| |
| /** |
| * Creates a new external string using the data defined in the given |
| * resource. When the external string is no longer live on V8's heap the |
| * resource will be disposed by calling its Dispose method. The caller of |
| * this function should not otherwise delete or modify the resource. Neither |
| * should the underlying buffer be deallocated or modified except through the |
| * destructor of the external string resource. |
| */ |
| V8EXPORT static Local<String> NewExternal(ExternalStringResource* resource); |
| |
| /** |
| * Associate an external string resource with this string by transforming it |
| * in place so that existing references to this string in the JavaScript heap |
| * will use the external string resource. The external string resource's |
| * character contents need to be equivalent to this string. |
| * Returns true if the string has been changed to be an external string. |
| * The string is not modified if the operation fails. See NewExternal for |
| * information on the lifetime of the resource. |
| */ |
| V8EXPORT bool MakeExternal(ExternalStringResource* resource); |
| |
| /** |
| * Creates a new external string using the ASCII data defined in the given |
| * resource. When the external string is no longer live on V8's heap the |
| * resource will be disposed by calling its Dispose method. The caller of |
| * this function should not otherwise delete or modify the resource. Neither |
| * should the underlying buffer be deallocated or modified except through the |
| * destructor of the external string resource. |
| */ V8EXPORT static Local<String> NewExternal( |
| ExternalAsciiStringResource* resource); |
| |
| /** |
| * Associate an external string resource with this string by transforming it |
| * in place so that existing references to this string in the JavaScript heap |
| * will use the external string resource. The external string resource's |
| * character contents need to be equivalent to this string. |
| * Returns true if the string has been changed to be an external string. |
| * The string is not modified if the operation fails. See NewExternal for |
| * information on the lifetime of the resource. |
| */ |
| V8EXPORT bool MakeExternal(ExternalAsciiStringResource* resource); |
| |
| /** |
| * Returns true if this string can be made external. |
| */ |
| V8EXPORT bool CanMakeExternal(); |
| |
| /** Creates an undetectable string from the supplied ASCII or UTF-8 data.*/ |
| V8EXPORT static Local<String> NewUndetectable(const char* data, |
| int length = -1); |
| |
| /** Creates an undetectable string from the supplied 16-bit character codes.*/ |
| V8EXPORT static Local<String> NewUndetectable(const uint16_t* data, |
| int length = -1); |
| |
| /** |
| * Converts an object to a UTF-8-encoded character array. Useful if |
| * you want to print the object. If conversion to a string fails |
| * (e.g. due to an exception in the toString() method of the object) |
| * then the length() method returns 0 and the * operator returns |
| * NULL. |
| */ |
| class V8EXPORT Utf8Value { |
| public: |
| explicit Utf8Value(Handle<v8::Value> obj); |
| ~Utf8Value(); |
| char* operator*() { return str_; } |
| const char* operator*() const { return str_; } |
| int length() const { return length_; } |
| private: |
| char* str_; |
| int length_; |
| |
| // Disallow copying and assigning. |
| Utf8Value(const Utf8Value&); |
| void operator=(const Utf8Value&); |
| }; |
| |
| /** |
| * Converts an object to an ASCII string. |
| * Useful if you want to print the object. |
| * If conversion to a string fails (eg. due to an exception in the toString() |
| * method of the object) then the length() method returns 0 and the * operator |
| * returns NULL. |
| */ |
| class V8EXPORT AsciiValue { |
| public: |
| explicit AsciiValue(Handle<v8::Value> obj); |
| ~AsciiValue(); |
| char* operator*() { return str_; } |
| const char* operator*() const { return str_; } |
| int length() const { return length_; } |
| private: |
| char* str_; |
| int length_; |
| |
| // Disallow copying and assigning. |
| AsciiValue(const AsciiValue&); |
| void operator=(const AsciiValue&); |
| }; |
| |
| /** |
| * Converts an object to a two-byte string. |
| * If conversion to a string fails (eg. due to an exception in the toString() |
| * method of the object) then the length() method returns 0 and the * operator |
| * returns NULL. |
| */ |
| class V8EXPORT Value { |
| public: |
| explicit Value(Handle<v8::Value> obj); |
| ~Value(); |
| uint16_t* operator*() { return str_; } |
| const uint16_t* operator*() const { return str_; } |
| int length() const { return length_; } |
| private: |
| uint16_t* str_; |
| int length_; |
| |
| // Disallow copying and assigning. |
| Value(const Value&); |
| void operator=(const Value&); |
| }; |
| |
| private: |
| V8EXPORT void VerifyExternalStringResourceBase(ExternalStringResourceBase* v, |
| Encoding encoding) const; |
| V8EXPORT void VerifyExternalStringResource(ExternalStringResource* val) const; |
| V8EXPORT static void CheckCast(v8::Value* obj); |
| }; |
| |
| |
| /** |
| * A JavaScript number value (ECMA-262, 4.3.20) |
| */ |
| class Number : public Primitive { |
| public: |
| V8EXPORT double Value() const; |
| V8EXPORT static Local<Number> New(double value); |
| static inline Number* Cast(v8::Value* obj); |
| private: |
| V8EXPORT Number(); |
| V8EXPORT static void CheckCast(v8::Value* obj); |
| }; |
| |
| |
| /** |
| * A JavaScript value representing a signed integer. |
| */ |
| class Integer : public Number { |
| public: |
| V8EXPORT static Local<Integer> New(int32_t value); |
| V8EXPORT static Local<Integer> NewFromUnsigned(uint32_t value); |
| V8EXPORT static Local<Integer> New(int32_t value, Isolate*); |
| V8EXPORT static Local<Integer> NewFromUnsigned(uint32_t value, Isolate*); |
| V8EXPORT int64_t Value() const; |
| static inline Integer* Cast(v8::Value* obj); |
| private: |
| V8EXPORT Integer(); |
| V8EXPORT static void CheckCast(v8::Value* obj); |
| }; |
| |
| |
| /** |
| * A JavaScript value representing a 32-bit signed integer. |
| */ |
| class Int32 : public Integer { |
| public: |
| V8EXPORT int32_t Value() const; |
| private: |
| V8EXPORT Int32(); |
| }; |
| |
| |
| /** |
| * A JavaScript value representing a 32-bit unsigned integer. |
| */ |
| class Uint32 : public Integer { |
| public: |
| V8EXPORT uint32_t Value() const; |
| private: |
| V8EXPORT Uint32(); |
| }; |
| |
| |
| enum PropertyAttribute { |
| None = 0, |
| ReadOnly = 1 << 0, |
| DontEnum = 1 << 1, |
| DontDelete = 1 << 2 |
| }; |
| |
| enum ExternalArrayType { |
| kExternalByteArray = 1, |
| kExternalUnsignedByteArray, |
| kExternalShortArray, |
| kExternalUnsignedShortArray, |
| kExternalIntArray, |
| kExternalUnsignedIntArray, |
| kExternalFloatArray, |
| kExternalDoubleArray, |
| kExternalPixelArray |
| }; |
| |
| /** |
| * Accessor[Getter|Setter] are used as callback functions when |
| * setting|getting a particular property. See Object and ObjectTemplate's |
| * method SetAccessor. |
| */ |
| typedef Handle<Value> (*AccessorGetter)(Local<String> property, |
| const AccessorInfo& info); |
| |
| |
| typedef void (*AccessorSetter)(Local<String> property, |
| Local<Value> value, |
| const AccessorInfo& info); |
| |
| |
| /** |
| * Access control specifications. |
| * |
| * Some accessors should be accessible across contexts. These |
| * accessors have an explicit access control parameter which specifies |
| * the kind of cross-context access that should be allowed. |
| * |
| * Additionally, for security, accessors can prohibit overwriting by |
| * accessors defined in JavaScript. For objects that have such |
| * accessors either locally or in their prototype chain it is not |
| * possible to overwrite the accessor by using __defineGetter__ or |
| * __defineSetter__ from JavaScript code. |
| */ |
| enum AccessControl { |
| DEFAULT = 0, |
| ALL_CAN_READ = 1, |
| ALL_CAN_WRITE = 1 << 1, |
| PROHIBITS_OVERWRITING = 1 << 2 |
| }; |
| |
| |
| /** |
| * A JavaScript object (ECMA-262, 4.3.3) |
| */ |
| class Object : public Value { |
| public: |
| V8EXPORT bool Set(Handle<Value> key, |
| Handle<Value> value, |
| PropertyAttribute attribs = None); |
| |
| V8EXPORT bool Set(uint32_t index, |
| Handle<Value> value); |
| |
| // Sets a local property on this object bypassing interceptors and |
| // overriding accessors or read-only properties. |
| // |
| // Note that if the object has an interceptor the property will be set |
| // locally, but since the interceptor takes precedence the local property |
| // will only be returned if the interceptor doesn't return a value. |
| // |
| // Note also that this only works for named properties. |
| V8EXPORT bool ForceSet(Handle<Value> key, |
| Handle<Value> value, |
| PropertyAttribute attribs = None); |
| |
| V8EXPORT Local<Value> Get(Handle<Value> key); |
| |
| V8EXPORT Local<Value> Get(uint32_t index); |
| |
| /** |
| * Gets the property attributes of a property which can be None or |
| * any combination of ReadOnly, DontEnum and DontDelete. Returns |
| * None when the property doesn't exist. |
| */ |
| V8EXPORT PropertyAttribute GetPropertyAttributes(Handle<Value> key); |
| |
| // TODO(1245389): Replace the type-specific versions of these |
| // functions with generic ones that accept a Handle<Value> key. |
| V8EXPORT bool Has(Handle<String> key); |
| |
| V8EXPORT bool Delete(Handle<String> key); |
| |
| // Delete a property on this object bypassing interceptors and |
| // ignoring dont-delete attributes. |
| V8EXPORT bool ForceDelete(Handle<Value> key); |
| |
| V8EXPORT bool Has(uint32_t index); |
| |
| V8EXPORT bool Delete(uint32_t index); |
| |
| V8EXPORT bool SetAccessor(Handle<String> name, |
| AccessorGetter getter, |
| AccessorSetter setter = 0, |
| Handle<Value> data = Handle<Value>(), |
| AccessControl settings = DEFAULT, |
| PropertyAttribute attribute = None); |
| |
| /** |
| * Returns an array containing the names of the enumerable properties |
| * of this object, including properties from prototype objects. The |
| * array returned by this method contains the same values as would |
| * be enumerated by a for-in statement over this object. |
| */ |
| V8EXPORT Local<Array> GetPropertyNames(); |
| |
| /** |
| * This function has the same functionality as GetPropertyNames but |
| * the returned array doesn't contain the names of properties from |
| * prototype objects. |
| */ |
| V8EXPORT Local<Array> GetOwnPropertyNames(); |
| |
| /** |
| * Get the prototype object. This does not skip objects marked to |
| * be skipped by __proto__ and it does not consult the security |
| * handler. |
| */ |
| V8EXPORT Local<Value> GetPrototype(); |
| |
| /** |
| * Set the prototype object. This does not skip objects marked to |
| * be skipped by __proto__ and it does not consult the security |
| * handler. |
| */ |
| V8EXPORT bool SetPrototype(Handle<Value> prototype); |
| |
| /** |
| * Finds an instance of the given function template in the prototype |
| * chain. |
| */ |
| V8EXPORT Local<Object> FindInstanceInPrototypeChain( |
| Handle<FunctionTemplate> tmpl); |
| |
| /** |
| * Call builtin Object.prototype.toString on this object. |
| * This is different from Value::ToString() that may call |
| * user-defined toString function. This one does not. |
| */ |
| V8EXPORT Local<String> ObjectProtoToString(); |
| |
| /** |
| * Returns the function invoked as a constructor for this object. |
| * May be the null value. |
| */ |
| V8EXPORT Local<Value> GetConstructor(); |
| |
| /** |
| * Returns the name of the function invoked as a constructor for this object. |
| */ |
| V8EXPORT Local<String> GetConstructorName(); |
| |
| /** Gets the number of internal fields for this Object. */ |
| V8EXPORT int InternalFieldCount(); |
| /** Gets the value in an internal field. */ |
| inline Local<Value> GetInternalField(int index); |
| /** Sets the value in an internal field. */ |
| V8EXPORT void SetInternalField(int index, Handle<Value> value); |
| |
| /** Gets a native pointer from an internal field. */ |
| inline void* GetPointerFromInternalField(int index); |
| |
| /** Sets a native pointer in an internal field. */ |
| V8EXPORT void SetPointerInInternalField(int index, void* value); |
| |
| // Testers for local properties. |
| V8EXPORT bool HasOwnProperty(Handle<String> key); |
| V8EXPORT bool HasRealNamedProperty(Handle<String> key); |
| V8EXPORT bool HasRealIndexedProperty(uint32_t index); |
| V8EXPORT bool HasRealNamedCallbackProperty(Handle<String> key); |
| |
| /** |
| * If result.IsEmpty() no real property was located in the prototype chain. |
| * This means interceptors in the prototype chain are not called. |
| */ |
| V8EXPORT Local<Value> GetRealNamedPropertyInPrototypeChain( |
| Handle<String> key); |
| |
| /** |
| * If result.IsEmpty() no real property was located on the object or |
| * in the prototype chain. |
| * This means interceptors in the prototype chain are not called. |
| */ |
| V8EXPORT Local<Value> GetRealNamedProperty(Handle<String> key); |
| |
| /** Tests for a named lookup interceptor.*/ |
| V8EXPORT bool HasNamedLookupInterceptor(); |
| |
| /** Tests for an index lookup interceptor.*/ |
| V8EXPORT bool HasIndexedLookupInterceptor(); |
| |
| /** |
| * Turns on access check on the object if the object is an instance of |
| * a template that has access check callbacks. If an object has no |
| * access check info, the object cannot be accessed by anyone. |
| */ |
| V8EXPORT void TurnOnAccessCheck(); |
| |
| /** |
| * Returns the identity hash for this object. The current implementation |
| * uses a hidden property on the object to store the identity hash. |
| * |
| * The return value will never be 0. Also, it is not guaranteed to be |
| * unique. |
| */ |
| V8EXPORT int GetIdentityHash(); |
| |
| /** |
| * Access hidden properties on JavaScript objects. These properties are |
| * hidden from the executing JavaScript and only accessible through the V8 |
| * C++ API. Hidden properties introduced by V8 internally (for example the |
| * identity hash) are prefixed with "v8::". |
| */ |
| V8EXPORT bool SetHiddenValue(Handle<String> key, Handle<Value> value); |
| V8EXPORT Local<Value> GetHiddenValue(Handle<String> key); |
| V8EXPORT bool DeleteHiddenValue(Handle<String> key); |
| |
| /** |
| * Returns true if this is an instance of an api function (one |
| * created from a function created from a function template) and has |
| * been modified since it was created. Note that this method is |
| * conservative and may return true for objects that haven't actually |
| * been modified. |
| */ |
| V8EXPORT bool IsDirty(); |
| |
| /** |
| * Clone this object with a fast but shallow copy. Values will point |
| * to the same values as the original object. |
| */ |
| V8EXPORT Local<Object> Clone(); |
| |
| /** |
| * Returns the context in which the object was created. |
| */ |
| V8EXPORT Local<Context> CreationContext(); |
| |
| /** |
| * Set the backing store of the indexed properties to be managed by the |
| * embedding layer. Access to the indexed properties will follow the rules |
| * spelled out in CanvasPixelArray. |
| * Note: The embedding program still owns the data and needs to ensure that |
| * the backing store is preserved while V8 has a reference. |
| */ |
| V8EXPORT void SetIndexedPropertiesToPixelData(uint8_t* data, int length); |
| V8EXPORT bool HasIndexedPropertiesInPixelData(); |
| V8EXPORT uint8_t* GetIndexedPropertiesPixelData(); |
| V8EXPORT int GetIndexedPropertiesPixelDataLength(); |
| |
| /** |
| * Set the backing store of the indexed properties to be managed by the |
| * embedding layer. Access to the indexed properties will follow the rules |
| * spelled out for the CanvasArray subtypes in the WebGL specification. |
| * Note: The embedding program still owns the data and needs to ensure that |
| * the backing store is preserved while V8 has a reference. |
| */ |
| V8EXPORT void SetIndexedPropertiesToExternalArrayData( |
| void* data, |
| ExternalArrayType array_type, |
| int number_of_elements); |
| V8EXPORT bool HasIndexedPropertiesInExternalArrayData(); |
| V8EXPORT void* GetIndexedPropertiesExternalArrayData(); |
| V8EXPORT ExternalArrayType GetIndexedPropertiesExternalArrayDataType(); |
| V8EXPORT int GetIndexedPropertiesExternalArrayDataLength(); |
| |
| /** |
| * Checks whether a callback is set by the |
| * ObjectTemplate::SetCallAsFunctionHandler method. |
| * When an Object is callable this method returns true. |
| */ |
| V8EXPORT bool IsCallable(); |
| |
| /** |
| * Call an Object as a function if a callback is set by the |
| * ObjectTemplate::SetCallAsFunctionHandler method. |
| */ |
| V8EXPORT Local<Value> CallAsFunction(Handle<Object> recv, |
| int argc, |
| Handle<Value> argv[]); |
| |
| /** |
| * Call an Object as a constructor if a callback is set by the |
| * ObjectTemplate::SetCallAsFunctionHandler method. |
| * Note: This method behaves like the Function::NewInstance method. |
| */ |
| V8EXPORT Local<Value> CallAsConstructor(int argc, |
| Handle<Value> argv[]); |
| |
| V8EXPORT static Local<Object> New(); |
| static inline Object* Cast(Value* obj); |
| |
| private: |
| V8EXPORT Object(); |
| V8EXPORT static void CheckCast(Value* obj); |
| V8EXPORT Local<Value> CheckedGetInternalField(int index); |
| V8EXPORT void* SlowGetPointerFromInternalField(int index); |
| |
| /** |
| * If quick access to the internal field is possible this method |
| * returns the value. Otherwise an empty handle is returned. |
| */ |
| inline Local<Value> UncheckedGetInternalField(int index); |
| }; |
| |
| |
| /** |
| * An instance of the built-in array constructor (ECMA-262, 15.4.2). |
| */ |
| class Array : public Object { |
| public: |
| V8EXPORT uint32_t Length() const; |
| |
| /** |
| * Clones an element at index |index|. Returns an empty |
| * handle if cloning fails (for any reason). |
| */ |
| V8EXPORT Local<Object> CloneElementAt(uint32_t index); |
| |
| /** |
| * Creates a JavaScript array with the given length. If the length |
| * is negative the returned array will have length 0. |
| */ |
| V8EXPORT static Local<Array> New(int length = 0); |
| |
| static inline Array* Cast(Value* obj); |
| private: |
| V8EXPORT Array(); |
| V8EXPORT static void CheckCast(Value* obj); |
| }; |
| |
| |
| /** |
| * A JavaScript function object (ECMA-262, 15.3). |
| */ |
| class Function : public Object { |
| public: |
| V8EXPORT Local<Object> NewInstance() const; |
| V8EXPORT Local<Object> NewInstance(int argc, Handle<Value> argv[]) const; |
| V8EXPORT Local<Value> Call(Handle<Object> recv, |
| int argc, |
| Handle<Value> argv[]); |
| V8EXPORT void SetName(Handle<String> name); |
| V8EXPORT Handle<Value> GetName() const; |
| |
| /** |
| * Name inferred from variable or property assignment of this function. |
| * Used to facilitate debugging and profiling of JavaScript code written |
| * in an OO style, where many functions are anonymous but are assigned |
| * to object properties. |
| */ |
| V8EXPORT Handle<Value> GetInferredName() const; |
| |
| /** |
| * Returns zero based line number of function body and |
| * kLineOffsetNotFound if no information available. |
| */ |
| V8EXPORT int GetScriptLineNumber() const; |
| /** |
| * Returns zero based column number of function body and |
| * kLineOffsetNotFound if no information available. |
| */ |
| V8EXPORT int GetScriptColumnNumber() const; |
| V8EXPORT Handle<Value> GetScriptId() const; |
| V8EXPORT ScriptOrigin GetScriptOrigin() const; |
| static inline Function* Cast(Value* obj); |
| V8EXPORT static const int kLineOffsetNotFound; |
| |
| private: |
| V8EXPORT Function(); |
| V8EXPORT static void CheckCast(Value* obj); |
| }; |
| |
| |
| /** |
| * An instance of the built-in Date constructor (ECMA-262, 15.9). |
| */ |
| class Date : public Object { |
| public: |
| V8EXPORT static Local<Value> New(double time); |
| |
| /** |
| * A specialization of Value::NumberValue that is more efficient |
| * because we know the structure of this object. |
| */ |
| V8EXPORT double NumberValue() const; |
| |
| static inline Date* Cast(v8::Value* obj); |
| |
| /** |
| * Notification that the embedder has changed the time zone, |
| * daylight savings time, or other date / time configuration |
| * parameters. V8 keeps a cache of various values used for |
| * date / time computation. This notification will reset |
| * those cached values for the current context so that date / |
| * time configuration changes would be reflected in the Date |
| * object. |
| * |
| * This API should not be called more than needed as it will |
| * negatively impact the performance of date operations. |
| */ |
| V8EXPORT static void DateTimeConfigurationChangeNotification(); |
| |
| private: |
| V8EXPORT static void CheckCast(v8::Value* obj); |
| }; |
| |
| |
| /** |
| * A Number object (ECMA-262, 4.3.21). |
| */ |
| class NumberObject : public Object { |
| public: |
| V8EXPORT static Local<Value> New(double value); |
| |
| /** |
| * Returns the Number held by the object. |
| */ |
| V8EXPORT double NumberValue() const; |
| |
| static inline NumberObject* Cast(v8::Value* obj); |
| |
| private: |
| V8EXPORT static void CheckCast(v8::Value* obj); |
| }; |
| |
| |
| /** |
| * A Boolean object (ECMA-262, 4.3.15). |
| */ |
| class BooleanObject : public Object { |
| public: |
| V8EXPORT static Local<Value> New(bool value); |
| |
| /** |
| * Returns the Boolean held by the object. |
| */ |
| V8EXPORT bool BooleanValue() const; |
| |
| static inline BooleanObject* Cast(v8::Value* obj); |
| |
| private: |
| V8EXPORT static void CheckCast(v8::Value* obj); |
| }; |
| |
| |
| /** |
| * A String object (ECMA-262, 4.3.18). |
| */ |
| class StringObject : public Object { |
| public: |
| V8EXPORT static Local<Value> New(Handle<String> value); |
| |
| /** |
| * Returns the String held by the object. |
| */ |
| V8EXPORT Local<String> StringValue() const; |
| |
| static inline StringObject* Cast(v8::Value* obj); |
| |
| private: |
| V8EXPORT static void CheckCast(v8::Value* obj); |
| }; |
| |
| |
| /** |
| * An instance of the built-in RegExp constructor (ECMA-262, 15.10). |
| */ |
| class RegExp : public Object { |
| public: |
| /** |
| * Regular expression flag bits. They can be or'ed to enable a set |
| * of flags. |
| */ |
| enum Flags { |
| kNone = 0, |
| kGlobal = 1, |
| kIgnoreCase = 2, |
| kMultiline = 4 |
| }; |
| |
| /** |
| * Creates a regular expression from the given pattern string and |
| * the flags bit field. May throw a JavaScript exception as |
| * described in ECMA-262, 15.10.4.1. |
| * |
| * For example, |
| * RegExp::New(v8::String::New("foo"), |
| * static_cast<RegExp::Flags>(kGlobal | kMultiline)) |
| * is equivalent to evaluating "/foo/gm". |
| */ |
| V8EXPORT static Local<RegExp> New(Handle<String> pattern, |
| Flags flags); |
| |
| /** |
| * Returns the value of the source property: a string representing |
| * the regular expression. |
| */ |
| V8EXPORT Local<String> GetSource() const; |
| |
| /** |
| * Returns the flags bit field. |
| */ |
| V8EXPORT Flags GetFlags() const; |
| |
| static inline RegExp* Cast(v8::Value* obj); |
| |
| private: |
| V8EXPORT static void CheckCast(v8::Value* obj); |
| }; |
| |
| |
| /** |
| * A JavaScript value that wraps a C++ void*. This type of value is |
| * mainly used to associate C++ data structures with JavaScript |
| * objects. |
| * |
| * The Wrap function V8 will return the most optimal Value object wrapping the |
| * C++ void*. The type of the value is not guaranteed to be an External object |
| * and no assumptions about its type should be made. To access the wrapped |
| * value Unwrap should be used, all other operations on that object will lead |
| * to unpredictable results. |
| */ |
| class External : public Value { |
| public: |
| V8EXPORT static Local<Value> Wrap(void* data); |
| static inline void* Unwrap(Handle<Value> obj); |
| |
| V8EXPORT static Local<External> New(void* value); |
| static inline External* Cast(Value* obj); |
| V8EXPORT void* Value() const; |
| private: |
| V8EXPORT External(); |
| V8EXPORT static void CheckCast(v8::Value* obj); |
| static inline void* QuickUnwrap(Handle<v8::Value> obj); |
| V8EXPORT static void* FullUnwrap(Handle<v8::Value> obj); |
| }; |
| |
| |
| // --- Templates --- |
| |
| |
| /** |
| * The superclass of object and function templates. |
| */ |
| class V8EXPORT Template : public Data { |
| public: |
| /** Adds a property to each instance created by this template.*/ |
| void Set(Handle<String> name, Handle<Data> value, |
| PropertyAttribute attributes = None); |
| inline void Set(const char* name, Handle<Data> value); |
| private: |
| Template(); |
| |
| friend class ObjectTemplate; |
| friend class FunctionTemplate; |
| }; |
| |
| |
| /** |
| * The argument information given to function call callbacks. This |
| * class provides access to information about the context of the call, |
| * including the receiver, the number and values of arguments, and |
| * the holder of the function. |
| */ |
| class Arguments { |
| public: |
| inline int Length() const; |
| inline Local<Value> operator[](int i) const; |
| inline Local<Function> Callee() const; |
| inline Local<Object> This() const; |
| inline Local<Object> Holder() const; |
| inline bool IsConstructCall() const; |
| inline Local<Value> Data() const; |
| inline Isolate* GetIsolate() const; |
| |
| private: |
| static const int kIsolateIndex = 0; |
| static const int kDataIndex = -1; |
| static const int kCalleeIndex = -2; |
| static const int kHolderIndex = -3; |
| |
| friend class ImplementationUtilities; |
| inline Arguments(internal::Object** implicit_args, |
| internal::Object** values, |
| int length, |
| bool is_construct_call); |
| internal::Object** implicit_args_; |
| internal::Object** values_; |
| int length_; |
| bool is_construct_call_; |
| }; |
| |
| |
| /** |
| * The information passed to an accessor callback about the context |
| * of the property access. |
| */ |
| class V8EXPORT AccessorInfo { |
| public: |
| inline AccessorInfo(internal::Object** args) |
| : args_(args) { } |
| inline Isolate* GetIsolate() const; |
| inline Local<Value> Data() const; |
| inline Local<Object> This() const; |
| inline Local<Object> Holder() const; |
| |
| private: |
| internal::Object** args_; |
| }; |
| |
| |
| typedef Handle<Value> (*InvocationCallback)(const Arguments& args); |
| |
| /** |
| * NamedProperty[Getter|Setter] are used as interceptors on object. |
| * See ObjectTemplate::SetNamedPropertyHandler. |
| */ |
| typedef Handle<Value> (*NamedPropertyGetter)(Local<String> property, |
| const AccessorInfo& info); |
| |
| |
| /** |
| * Returns the value if the setter intercepts the request. |
| * Otherwise, returns an empty handle. |
| */ |
| typedef Handle<Value> (*NamedPropertySetter)(Local<String> property, |
| Local<Value> value, |
| const AccessorInfo& info); |
| |
| /** |
| * Returns a non-empty handle if the interceptor intercepts the request. |
| * The result is an integer encoding property attributes (like v8::None, |
| * v8::DontEnum, etc.) |
| */ |
| typedef Handle<Integer> (*NamedPropertyQuery)(Local<String> property, |
| const AccessorInfo& info); |
| |
| |
| /** |
| * Returns a non-empty handle if the deleter intercepts the request. |
| * The return value is true if the property could be deleted and false |
| * otherwise. |
| */ |
| typedef Handle<Boolean> (*NamedPropertyDeleter)(Local<String> property, |
| const AccessorInfo& info); |
| |
| /** |
| * Returns an array containing the names of the properties the named |
| * property getter intercepts. |
| */ |
| typedef Handle<Array> (*NamedPropertyEnumerator)(const AccessorInfo& info); |
| |
| |
| /** |
| * Returns the value of the property if the getter intercepts the |
| * request. Otherwise, returns an empty handle. |
| */ |
| typedef Handle<Value> (*IndexedPropertyGetter)(uint32_t index, |
| const AccessorInfo& info); |
| |
| |
| /** |
| * Returns the value if the setter intercepts the request. |
| * Otherwise, returns an empty handle. |
| */ |
| typedef Handle<Value> (*IndexedPropertySetter)(uint32_t index, |
| Local<Value> value, |
| const AccessorInfo& info); |
| |
| |
| /** |
| * Returns a non-empty handle if the interceptor intercepts the request. |
| * The result is an integer encoding property attributes. |
| */ |
| typedef Handle<Integer> (*IndexedPropertyQuery)(uint32_t index, |
| const AccessorInfo& info); |
| |
| /** |
| * Returns a non-empty handle if the deleter intercepts the request. |
| * The return value is true if the property could be deleted and false |
| * otherwise. |
| */ |
| typedef Handle<Boolean> (*IndexedPropertyDeleter)(uint32_t index, |
| const AccessorInfo& info); |
| |
| /** |
| * Returns an array containing the indices of the properties the |
| * indexed property getter intercepts. |
| */ |
| typedef Handle<Array> (*IndexedPropertyEnumerator)(const AccessorInfo& info); |
| |
| |
| /** |
| * Access type specification. |
| */ |
| enum AccessType { |
| ACCESS_GET, |
| ACCESS_SET, |
| ACCESS_HAS, |
| ACCESS_DELETE, |
| ACCESS_KEYS |
| }; |
| |
| |
| /** |
| * Returns true if cross-context access should be allowed to the named |
| * property with the given key on the host object. |
| */ |
| typedef bool (*NamedSecurityCallback)(Local<Object> host, |
| Local<Value> key, |
| AccessType type, |
| Local<Value> data); |
| |
| |
| /** |
| * Returns true if cross-context access should be allowed to the indexed |
| * property with the given index on the host object. |
| */ |
| typedef bool (*IndexedSecurityCallback)(Local<Object> host, |
| uint32_t index, |
| AccessType type, |
| Local<Value> data); |
| |
| |
| /** |
| * A FunctionTemplate is used to create functions at runtime. There |
| * can only be one function created from a FunctionTemplate in a |
| * context. The lifetime of the created function is equal to the |
| * lifetime of the context. So in case the embedder needs to create |
| * temporary functions that can be collected using Scripts is |
| * preferred. |
| * |
| * A FunctionTemplate can have properties, these properties are added to the |
| * function object when it is created. |
| * |
| * A FunctionTemplate has a corresponding instance template which is |
| * used to create object instances when the function is used as a |
| * constructor. Properties added to the instance template are added to |
| * each object instance. |
| * |
| * A FunctionTemplate can have a prototype template. The prototype template |
| * is used to create the prototype object of the function. |
| * |
| * The following example shows how to use a FunctionTemplate: |
| * |
| * \code |
| * v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New(); |
| * t->Set("func_property", v8::Number::New(1)); |
| * |
| * v8::Local<v8::Template> proto_t = t->PrototypeTemplate(); |
| * proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback)); |
| * proto_t->Set("proto_const", v8::Number::New(2)); |
| * |
| * v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate(); |
| * instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback); |
| * instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...); |
| * instance_t->Set("instance_property", Number::New(3)); |
| * |
| * v8::Local<v8::Function> function = t->GetFunction(); |
| * v8::Local<v8::Object> instance = function->NewInstance(); |
| * \endcode |
| * |
| * Let's use "function" as the JS variable name of the function object |
| * and "instance" for the instance object created above. The function |
| * and the instance will have the following properties: |
| * |
| * \code |
| * func_property in function == true; |
| * function.func_property == 1; |
| * |
| * function.prototype.proto_method() invokes 'InvokeCallback' |
| * function.prototype.proto_const == 2; |
| * |
| * instance instanceof function == true; |
| * instance.instance_accessor calls 'InstanceAccessorCallback' |
| * instance.instance_property == 3; |
| * \endcode |
| * |
| * A FunctionTemplate can inherit from another one by calling the |
| * FunctionTemplate::Inherit method. The following graph illustrates |
| * the semantics of inheritance: |
| * |
| * \code |
| * FunctionTemplate Parent -> Parent() . prototype -> { } |
| * ^ ^ |
| * | Inherit(Parent) | .__proto__ |
| * | | |
| * FunctionTemplate Child -> Child() . prototype -> { } |
| * \endcode |
| * |
| * A FunctionTemplate 'Child' inherits from 'Parent', the prototype |
| * object of the Child() function has __proto__ pointing to the |
| * Parent() function's prototype object. An instance of the Child |
| * function has all properties on Parent's instance templates. |
| * |
| * Let Parent be the FunctionTemplate initialized in the previous |
| * section and create a Child FunctionTemplate by: |
| * |
| * \code |
| * Local<FunctionTemplate> parent = t; |
| * Local<FunctionTemplate> child = FunctionTemplate::New(); |
| * child->Inherit(parent); |
| * |
| * Local<Function> child_function = child->GetFunction(); |
| * Local<Object> child_instance = child_function->NewInstance(); |
| * \endcode |
| * |
| * The Child function and Child instance will have the following |
| * properties: |
| * |
| * \code |
| * child_func.prototype.__proto__ == function.prototype; |
| * child_instance.instance_accessor calls 'InstanceAccessorCallback' |
| * child_instance.instance_property == 3; |
| * \endcode |
| */ |
| class V8EXPORT FunctionTemplate : public Template { |
| public: |
| /** Creates a function template.*/ |
| static Local<FunctionTemplate> New( |
| InvocationCallback callback = 0, |
| Handle<Value> data = Handle<Value>(), |
| Handle<Signature> signature = Handle<Signature>()); |
| /** Returns the unique function instance in the current execution context.*/ |
| Local<Function> GetFunction(); |
| |
| /** |
| * Set the call-handler callback for a FunctionTemplate. This |
| * callback is called whenever the function created from this |
| * FunctionTemplate is called. |
| */ |
| void SetCallHandler(InvocationCallback callback, |
| Handle<Value> data = Handle<Value>()); |
| |
| /** Get the InstanceTemplate. */ |
| Local<ObjectTemplate> InstanceTemplate(); |
| |
| /** Causes the function template to inherit from a parent function template.*/ |
| void Inherit(Handle<FunctionTemplate> parent); |
| |
| /** |
| * A PrototypeTemplate is the template used to create the prototype object |
| * of the function created by this template. |
| */ |
| Local<ObjectTemplate> PrototypeTemplate(); |
| |
| |
| /** |
| * Set the class name of the FunctionTemplate. This is used for |
| * printing objects created with the function created from the |
| * FunctionTemplate as its constructor. |
| */ |
| void SetClassName(Handle<String> name); |
| |
| /** |
| * Determines whether the __proto__ accessor ignores instances of |
| * the function template. If instances of the function template are |
| * ignored, __proto__ skips all instances and instead returns the |
| * next object in the prototype chain. |
| * |
| * Call with a value of true to make the __proto__ accessor ignore |
| * instances of the function template. Call with a value of false |
| * to make the __proto__ accessor not ignore instances of the |
| * function template. By default, instances of a function template |
| * are not ignored. |
| */ |
| void SetHiddenPrototype(bool value); |
| |
| /** |
| * Sets the ReadOnly flag in the attributes of the 'prototype' property |
| * of functions created from this FunctionTemplate to true. |
| */ |
| void ReadOnlyPrototype(); |
| |
| /** |
| * Returns true if the given object is an instance of this function |
| * template. |
| */ |
| bool HasInstance(Handle<Value> object); |
| |
| private: |
| FunctionTemplate(); |
| void AddInstancePropertyAccessor(Handle<String> name, |
| AccessorGetter getter, |
| AccessorSetter setter, |
| Handle<Value> data, |
| AccessControl settings, |
| PropertyAttribute attributes, |
| Handle<AccessorSignature> signature); |
| void SetNamedInstancePropertyHandler(NamedPropertyGetter getter, |
| NamedPropertySetter setter, |
| NamedPropertyQuery query, |
| NamedPropertyDeleter remover, |
| NamedPropertyEnumerator enumerator, |
| Handle<Value> data); |
| void SetIndexedInstancePropertyHandler(IndexedPropertyGetter getter, |
| IndexedPropertySetter setter, |
| IndexedPropertyQuery query, |
| IndexedPropertyDeleter remover, |
| IndexedPropertyEnumerator enumerator, |
| Handle<Value> data); |
| void SetInstanceCallAsFunctionHandler(InvocationCallback callback, |
| Handle<Value> data); |
| |
| friend class Context; |
| friend class ObjectTemplate; |
| }; |
| |
| |
| /** |
| * An ObjectTemplate is used to create objects at runtime. |
| * |
| * Properties added to an ObjectTemplate are added to each object |
| * created from the ObjectTemplate. |
| */ |
| class V8EXPORT ObjectTemplate : public Template { |
| public: |
| /** Creates an ObjectTemplate. */ |
| static Local<ObjectTemplate> New(); |
| |
| /** Creates a new instance of this template.*/ |
| Local<Object> NewInstance(); |
| |
| /** |
| * Sets an accessor on the object template. |
| * |
| * Whenever the property with the given name is accessed on objects |
| * created from this ObjectTemplate the getter and setter callbacks |
| * are called instead of getting and setting the property directly |
| * on the JavaScript object. |
| * |
| * \param name The name of the property for which an accessor is added. |
| * \param getter The callback to invoke when getting the property. |
| * \param setter The callback to invoke when setting the property. |
| * \param data A piece of data that will be passed to the getter and setter |
| * callbacks whenever they are invoked. |
| * \param settings Access control settings for the accessor. This is a bit |
| * field consisting of one of more of |
| * DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2. |
| * The default is to not allow cross-context access. |
| * ALL_CAN_READ means that all cross-context reads are allowed. |
| * ALL_CAN_WRITE means that all cross-context writes are allowed. |
| * The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all |
| * cross-context access. |
| * \param attribute The attributes of the property for which an accessor |
| * is added. |
| * \param signature The signature describes valid receivers for the accessor |
| * and is used to perform implicit instance checks against them. If the |
| * receiver is incompatible (i.e. is not an instance of the constructor as |
| * defined by FunctionTemplate::HasInstance()), an implicit TypeError is |
| * thrown and no callback is invoked. |
| */ |
| void SetAccessor(Handle<String> name, |
| AccessorGetter getter, |
| AccessorSetter setter = 0, |
| Handle<Value> data = Handle<Value>(), |
| AccessControl settings = DEFAULT, |
| PropertyAttribute attribute = None, |
| Handle<AccessorSignature> signature = |
| Handle<AccessorSignature>()); |
| |
| /** |
| * Sets a named property handler on the object template. |
| * |
| * Whenever a named property is accessed on objects created from |
| * this object template, the provided callback is invoked instead of |
| * accessing the property directly on the JavaScript object. |
| * |
| * \param getter The callback to invoke when getting a property. |
| * \param setter The callback to invoke when setting a property. |
| * \param query The callback to invoke to check if a property is present, |
| * and if present, get its attributes. |
| * \param deleter The callback to invoke when deleting a property. |
| * \param enumerator The callback to invoke to enumerate all the named |
| * properties of an object. |
| * \param data A piece of data that will be passed to the callbacks |
| * whenever they are invoked. |
| */ |
| void SetNamedPropertyHandler(NamedPropertyGetter getter, |
| NamedPropertySetter setter = 0, |
| NamedPropertyQuery query = 0, |
| NamedPropertyDeleter deleter = 0, |
| NamedPropertyEnumerator enumerator = 0, |
| Handle<Value> data = Handle<Value>()); |
| |
| /** |
| * Sets an indexed property handler on the object template. |
| * |
| * Whenever an indexed property is accessed on objects created from |
| * this object template, the provided callback is invoked instead of |
| * accessing the property directly on the JavaScript object. |
| * |
| * \param getter The callback to invoke when getting a property. |
| * \param setter The callback to invoke when setting a property. |
| * \param query The callback to invoke to check if an object has a property. |
| * \param deleter The callback to invoke when deleting a property. |
| * \param enumerator The callback to invoke to enumerate all the indexed |
| * properties of an object. |
| * \param data A piece of data that will be passed to the callbacks |
| * whenever they are invoked. |
| */ |
| void SetIndexedPropertyHandler(IndexedPropertyGetter getter, |
| IndexedPropertySetter setter = 0, |
| IndexedPropertyQuery query = 0, |
| IndexedPropertyDeleter deleter = 0, |
| IndexedPropertyEnumerator enumerator = 0, |
| Handle<Value> data = Handle<Value>()); |
| |
| /** |
| * Sets the callback to be used when calling instances created from |
| * this template as a function. If no callback is set, instances |
| * behave like normal JavaScript objects that cannot be called as a |
| * function. |
| */ |
| void SetCallAsFunctionHandler(InvocationCallback callback, |
| Handle<Value> data = Handle<Value>()); |
| |
| /** |
| * Mark object instances of the template as undetectable. |
| * |
| * In many ways, undetectable objects behave as though they are not |
| * there. They behave like 'undefined' in conditionals and when |
| * printed. However, properties can be accessed and called as on |
| * normal objects. |
| */ |
| void MarkAsUndetectable(); |
| |
| /** |
| * Sets access check callbacks on the object template. |
| * |
| * When accessing properties on instances of this object template, |
| * the access check callback will be called to determine whether or |
| * not to allow cross-context access to the properties. |
| * The last parameter specifies whether access checks are turned |
| * on by default on instances. If access checks are off by default, |
| * they can be turned on on individual instances by calling |
| * Object::TurnOnAccessCheck(). |
| */ |
| void SetAccessCheckCallbacks(NamedSecurityCallback named_handler, |
| IndexedSecurityCallback indexed_handler, |
| Handle<Value> data = Handle<Value>(), |
| bool turned_on_by_default = true); |
| |
| /** |
| * Gets the number of internal fields for objects generated from |
| * this template. |
| */ |
| int InternalFieldCount(); |
| |
| /** |
| * Sets the number of internal fields for objects generated from |
| * this template. |
| */ |
| void SetInternalFieldCount(int value); |
| |
| private: |
| ObjectTemplate(); |
| static Local<ObjectTemplate> New(Handle<FunctionTemplate> constructor); |
| friend class FunctionTemplate; |
| }; |
| |
| |
| /** |
| * A Signature specifies which receivers and arguments are valid |
| * parameters to a function. |
| */ |
| class V8EXPORT Signature : public Data { |
| public: |
| static Local<Signature> New(Handle<FunctionTemplate> receiver = |
| Handle<FunctionTemplate>(), |
| int argc = 0, |
| Handle<FunctionTemplate> argv[] = 0); |
| private: |
| Signature(); |
| }; |
| |
| |
| /** |
| * An AccessorSignature specifies which receivers are valid parameters |
| * to an accessor callback. |
| */ |
| class V8EXPORT AccessorSignature : public Data { |
| public: |
| static Local<AccessorSignature> New(Handle<FunctionTemplate> receiver = |
| Handle<FunctionTemplate>()); |
| private: |
| AccessorSignature(); |
| }; |
| |
| |
| /** |
| * A utility for determining the type of objects based on the template |
| * they were constructed from. |
| */ |
| class V8EXPORT TypeSwitch : public Data { |
| public: |
| static Local<TypeSwitch> New(Handle<FunctionTemplate> type); |
| static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]); |
| int match(Handle<Value> value); |
| private: |
| TypeSwitch(); |
| }; |
| |
| |
| // --- Extensions --- |
| |
| class V8EXPORT ExternalAsciiStringResourceImpl |
| : public String::ExternalAsciiStringResource { |
| public: |
| ExternalAsciiStringResourceImpl() : data_(0), length_(0) {} |
| ExternalAsciiStringResourceImpl(const char* data, size_t length) |
| : data_(data), length_(length) {} |
| const char* data() const { return data_; } |
| size_t length() const { return length_; } |
| |
| private: |
| const char* data_; |
| size_t length_; |
| }; |
| |
| /** |
| * Ignore |
| */ |
| class V8EXPORT Extension { // NOLINT |
| public: |
| // Note that the strings passed into this constructor must live as long |
| // as the Extension itself. |
| Extension(const char* name, |
| const char* source = 0, |
| int dep_count = 0, |
| const char** deps = 0, |
| int source_length = -1); |
| virtual ~Extension() { } |
| virtual v8::Handle<v8::FunctionTemplate> |
| GetNativeFunction(v8::Handle<v8::String> name) { |
| return v8::Handle<v8::FunctionTemplate>(); |
| } |
| |
| const char* name() const { return name_; } |
| size_t source_length() const { return source_length_; } |
| const String::ExternalAsciiStringResource* source() const { |
| return &source_; } |
| int dependency_count() { return dep_count_; } |
| const char** dependencies() { return deps_; } |
| void set_auto_enable(bool value) { auto_enable_ = value; } |
| bool auto_enable() { return auto_enable_; } |
| |
| private: |
| const char* name_; |
| size_t source_length_; // expected to initialize before source_ |
| ExternalAsciiStringResourceImpl source_; |
| int dep_count_; |
| const char** deps_; |
| bool auto_enable_; |
| |
| // Disallow copying and assigning. |
| Extension(const Extension&); |
| void operator=(const Extension&); |
| }; |
| |
| |
| void V8EXPORT RegisterExtension(Extension* extension); |
| |
| |
| /** |
| * Ignore |
| */ |
| class V8EXPORT DeclareExtension { |
| public: |
| inline DeclareExtension(Extension* extension) { |
| RegisterExtension(extension); |
| } |
| }; |
| |
| |
| // --- Statics --- |
| |
| |
| Handle<Primitive> V8EXPORT Undefined(); |
| Handle<Primitive> V8EXPORT Null(); |
| Handle<Boolean> V8EXPORT True(); |
| Handle<Boolean> V8EXPORT False(); |
| |
| inline Handle<Primitive> Undefined(Isolate* isolate); |
| inline Handle<Primitive> Null(Isolate* isolate); |
| inline Handle<Boolean> True(Isolate* isolate); |
| inline Handle<Boolean> False(Isolate* isolate); |
| |
| |
| /** |
| * A set of constraints that specifies the limits of the runtime's memory use. |
| * You must set the heap size before initializing the VM - the size cannot be |
| * adjusted after the VM is initialized. |
| * |
| * If you are using threads then you should hold the V8::Locker lock while |
| * setting the stack limit and you must set a non-default stack limit separately |
| * for each thread. |
| */ |
| class V8EXPORT ResourceConstraints { |
| public: |
| ResourceConstraints(); |
| int max_young_space_size() const { return max_young_space_size_; } |
| void set_max_young_space_size(int value) { max_young_space_size_ = value; } |
| int max_old_space_size() const { return max_old_space_size_; } |
| void set_max_old_space_size(int value) { max_old_space_size_ = value; } |
| int max_executable_size() { return max_executable_size_; } |
| void set_max_executable_size(int value) { max_executable_size_ = value; } |
| uint32_t* stack_limit() const { return stack_limit_; } |
| // Sets an address beyond which the VM's stack may not grow. |
| void set_stack_limit(uint32_t* value) { stack_limit_ = value; } |
| private: |
| int max_young_space_size_; |
| int max_old_space_size_; |
| int max_executable_size_; |
| uint32_t* stack_limit_; |
| }; |
| |
| |
| bool V8EXPORT SetResourceConstraints(ResourceConstraints* constraints); |
| |
| |
| // --- Exceptions --- |
| |
| |
| typedef void (*FatalErrorCallback)(const char* location, const char* message); |
| |
| |
| typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> error); |
| |
| |
| /** |
| * Schedules an exception to be thrown when returning to JavaScript. When an |
| * exception has been scheduled it is illegal to invoke any JavaScript |
| * operation; the caller must return immediately and only after the exception |
| * has been handled does it become legal to invoke JavaScript operations. |
| */ |
| Handle<Value> V8EXPORT ThrowException(Handle<Value> exception); |
| |
| /** |
| * Create new error objects by calling the corresponding error object |
| * constructor with the message. |
| */ |
| class V8EXPORT Exception { |
| public: |
| static Local<Value> RangeError(Handle<String> message); |
| static Local<Value> ReferenceError(Handle<String> message); |
| static Local<Value> SyntaxError(Handle<String> message); |
| static Local<Value> TypeError(Handle<String> message); |
| static Local<Value> Error(Handle<String> message); |
| }; |
| |
| |
| // --- Counters Callbacks --- |
| |
| typedef int* (*CounterLookupCallback)(const char* name); |
| |
| typedef void* (*CreateHistogramCallback)(const char* name, |
| int min, |
| int max, |
| size_t buckets); |
| |
| typedef void (*AddHistogramSampleCallback)(void* histogram, int sample); |
| |
| // --- Memory Allocation Callback --- |
| enum ObjectSpace { |
| kObjectSpaceNewSpace = 1 << 0, |
| kObjectSpaceOldPointerSpace = 1 << 1, |
| kObjectSpaceOldDataSpace = 1 << 2, |
| kObjectSpaceCodeSpace = 1 << 3, |
| kObjectSpaceMapSpace = 1 << 4, |
| kObjectSpaceLoSpace = 1 << 5, |
| |
| kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldPointerSpace | |
| kObjectSpaceOldDataSpace | kObjectSpaceCodeSpace | kObjectSpaceMapSpace | |
| kObjectSpaceLoSpace |
| }; |
| |
| enum AllocationAction { |
| kAllocationActionAllocate = 1 << 0, |
| kAllocationActionFree = 1 << 1, |
| kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree |
| }; |
| |
| typedef void (*MemoryAllocationCallback)(ObjectSpace space, |
| AllocationAction action, |
| int size); |
| |
| // --- Leave Script Callback --- |
| typedef void (*CallCompletedCallback)(); |
| |
| // --- Failed Access Check Callback --- |
| typedef void (*FailedAccessCheckCallback)(Local<Object> target, |
| AccessType type, |
| Local<Value> data); |
| |
| // --- AllowCodeGenerationFromStrings callbacks --- |
| |
| /** |
| * Callback to check if code generation from strings is allowed. See |
| * Context::AllowCodeGenerationFromStrings. |
| */ |
| typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context); |
| |
| // --- Garbage Collection Callbacks --- |
| |
| /** |
| * Applications can register callback functions which will be called |
| * before and after a garbage collection. Allocations are not |
| * allowed in the callback functions, you therefore cannot manipulate |
| * objects (set or delete properties for example) since it is possible |
| * such operations will result in the allocation of objects. |
| */ |
| enum GCType { |
| kGCTypeScavenge = 1 << 0, |
| kGCTypeMarkSweepCompact = 1 << 1, |
| kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact |
| }; |
| |
| enum GCCallbackFlags { |
| kNoGCCallbackFlags = 0, |
| kGCCallbackFlagCompacted = 1 << 0 |
| }; |
| |
| typedef void (*GCPrologueCallback)(GCType type, GCCallbackFlags flags); |
| typedef void (*GCEpilogueCallback)(GCType type, GCCallbackFlags flags); |
| |
| typedef void (*GCCallback)(); |
| |
| |
| /** |
| * Collection of V8 heap information. |
| * |
| * Instances of this class can be passed to v8::V8::HeapStatistics to |
| * get heap statistics from V8. |
| */ |
| class V8EXPORT HeapStatistics { |
| public: |
| HeapStatistics(); |
| size_t total_heap_size() { return total_heap_size_; } |
| size_t total_heap_size_executable() { return total_heap_size_executable_; } |
| size_t used_heap_size() { return used_heap_size_; } |
| size_t heap_size_limit() { return heap_size_limit_; } |
| |
| private: |
| void set_total_heap_size(size_t size) { total_heap_size_ = size; } |
| void set_total_heap_size_executable(size_t size) { |
| total_heap_size_executable_ = size; |
| } |
| void set_used_heap_size(size_t size) { used_heap_size_ = size; } |
| void set_heap_size_limit(size_t size) { heap_size_limit_ = size; } |
| |
| size_t total_heap_size_; |
| size_t total_heap_size_executable_; |
| size_t used_heap_size_; |
| size_t heap_size_limit_; |
| |
| friend class V8; |
| }; |
| |
| |
| class RetainedObjectInfo; |
| |
| /** |
| * Isolate represents an isolated instance of the V8 engine. V8 |
| * isolates have completely separate states. Objects from one isolate |
| * must not be used in other isolates. When V8 is initialized a |
| * default isolate is implicitly created and entered. The embedder |
| * can create additional isolates and use them in parallel in multiple |
| * threads. An isolate can be entered by at most one thread at any |
| * given time. The Locker/Unlocker API must be used to synchronize. |
| */ |
| class V8EXPORT Isolate { |
| public: |
| /** |
| * Stack-allocated class which sets the isolate for all operations |
| * executed within a local scope. |
| */ |
| class V8EXPORT Scope { |
| public: |
| explicit Scope(Isolate* isolate) : isolate_(isolate) { |
| isolate->Enter(); |
| } |
| |
| ~Scope() { isolate_->Exit(); } |
| |
| private: |
| Isolate* const isolate_; |
| |
| // Prevent copying of Scope objects. |
| Scope(const Scope&); |
| Scope& operator=(const Scope&); |
| }; |
| |
| /** |
| * Creates a new isolate. Does not change the currently entered |
| * isolate. |
| * |
| * When an isolate is no longer used its resources should be freed |
| * by calling Dispose(). Using the delete operator is not allowed. |
| */ |
| static Isolate* New(); |
| |
| /** |
| * Returns the entered isolate for the current thread or NULL in |
| * case there is no current isolate. |
| */ |
| static Isolate* GetCurrent(); |
| |
| /** |
| * Methods below this point require holding a lock (using Locker) in |
| * a multi-threaded environment. |
| */ |
| |
| /** |
| * Sets this isolate as the entered one for the current thread. |
| * Saves the previously entered one (if any), so that it can be |
| * restored when exiting. Re-entering an isolate is allowed. |
| */ |
| void Enter(); |
| |
| /** |
| * Exits this isolate by restoring the previously entered one in the |
| * current thread. The isolate may still stay the same, if it was |
| * entered more than once. |
| * |
| * Requires: this == Isolate::GetCurrent(). |
| */ |
| void Exit(); |
| |
| /** |
| * Disposes the isolate. The isolate must not be entered by any |
| * thread to be disposable. |
| */ |
| void Dispose(); |
| |
| /** |
| * Associate embedder-specific data with the isolate |
| */ |
| inline void SetData(void* data); |
| |
| /** |
| * Retrieve embedder-specific data from the isolate. |
| * Returns NULL if SetData has never been called. |
| */ |
| inline void* GetData(); |
| |
| private: |
| Isolate(); |
| Isolate(const Isolate&); |
| ~Isolate(); |
| Isolate& operator=(const Isolate&); |
| void* operator new(size_t size); |
| void operator delete(void*, size_t); |
| }; |
| |
| |
| class StartupData { |
| public: |
| enum CompressionAlgorithm { |
| kUncompressed, |
| kBZip2 |
| }; |
| |
| const char* data; |
| int compressed_size; |
| int raw_size; |
| }; |
| |
| |
| /** |
| * A helper class for driving V8 startup data decompression. It is based on |
| * "CompressedStartupData" API functions from the V8 class. It isn't mandatory |
| * for an embedder to use this class, instead, API functions can be used |
| * directly. |
| * |
| * For an example of the class usage, see the "shell.cc" sample application. |
| */ |
| class V8EXPORT StartupDataDecompressor { // NOLINT |
| public: |
| StartupDataDecompressor(); |
| virtual ~StartupDataDecompressor(); |
| int Decompress(); |
| |
| protected: |
| virtual int DecompressData(char* raw_data, |
| int* raw_data_size, |
| const char* compressed_data, |
| int compressed_data_size) = 0; |
| |
| private: |
| char** raw_data; |
| }; |
| |
| |
| /** |
| * EntropySource is used as a callback function when v8 needs a source |
| * of entropy. |
| */ |
| typedef bool (*EntropySource)(unsigned char* buffer, size_t length); |
| |
| |
| /** |
| * ReturnAddressLocationResolver is used as a callback function when v8 is |
| * resolving the location of a return address on the stack. Profilers that |
| * change the return address on the stack can use this to resolve the stack |
| * location to whereever the profiler stashed the original return address. |
| * |
| * \param return_addr_location points to a location on stack where a machine |
| * return address resides. |
| * \returns either return_addr_location, or else a pointer to the profiler's |
| * copy of the original return address. |
| * |
| * \note the resolver function must not cause garbage collection. |
| */ |
| typedef uintptr_t (*ReturnAddressLocationResolver)( |
| uintptr_t return_addr_location); |
| |
| |
| /** |
| * FunctionEntryHook is the type of the profile entry hook called at entry to |
| * any generated function when function-level profiling is enabled. |
| * |
| * \param function the address of the function that's being entered. |
| * \param return_addr_location points to a location on stack where the machine |
| * return address resides. This can be used to identify the caller of |
| * \p function, and/or modified to divert execution when \p function exits. |
| * |
| * \note the entry hook must not cause garbage collection. |
| */ |
| typedef void (*FunctionEntryHook)(uintptr_t function, |
| uintptr_t return_addr_location); |
| |
| |
| /** |
| * A JIT code event is issued each time code is added, moved or removed. |
| * |
| * \note removal events are not currently issued. |
| */ |
| struct JitCodeEvent { |
| enum EventType { |
| CODE_ADDED, |
| CODE_MOVED, |
| CODE_REMOVED |
| }; |
| |
| // Type of event. |
| EventType type; |
| // Start of the instructions. |
| void* code_start; |
| // Size of the instructions. |
| size_t code_len; |
| |
| union { |
| // Only valid for CODE_ADDED. |
| struct { |
| // Name of the object associated with the code, note that the string is |
| // not zero-terminated. |
| const char* str; |
| // Number of chars in str. |
| size_t len; |
| } name; |
| // New location of instructions. Only valid for CODE_MOVED. |
| void* new_code_start; |
| }; |
| }; |
| |
| /** |
| * Option flags passed to the SetJitCodeEventHandler function. |
| */ |
| enum JitCodeEventOptions { |
| kJitCodeEventDefault = 0, |
| // Generate callbacks for already existent code. |
| kJitCodeEventEnumExisting = 1 |
| }; |
| |
| |
| /** |
| * Callback function passed to SetJitCodeEventHandler. |
| * |
| * \param event code add, move or removal event. |
| */ |
| typedef void (*JitCodeEventHandler)(const JitCodeEvent* event); |
| |
| |
| /** |
| * Interface for iterating through all external resources in the heap. |
| */ |
| class V8EXPORT ExternalResourceVisitor { // NOLINT |
| public: |
| virtual ~ExternalResourceVisitor() {} |
| virtual void VisitExternalString(Handle<String> string) {} |
| }; |
| |
| |
| /** |
| * Interface for iterating through all the persistent handles in the heap. |
| */ |
| class V8EXPORT PersistentHandleVisitor { // NOLINT |
| public: |
| virtual ~PersistentHandleVisitor() {} |
| virtual void VisitPersistentHandle(Persistent<Value> value, |
| uint16_t class_id) {} |
| }; |
| |
| |
| /** |
| * Container class for static utility functions. |
| */ |
| class V8EXPORT V8 { |
| public: |
| /** Set the callback to invoke in case of fatal errors. */ |
| static void SetFatalErrorHandler(FatalErrorCallback that); |
| |
| /** |
| * Set the callback to invoke to check if code generation from |
| * strings should be allowed. |
| */ |
| static void SetAllowCodeGenerationFromStringsCallback( |
| AllowCodeGenerationFromStringsCallback that); |
| |
| /** |
| * Ignore out-of-memory exceptions. |
| * |
| * V8 running out of memory is treated as a fatal error by default. |
| * This means that the fatal error handler is called and that V8 is |
| * terminated. |
| * |
| * IgnoreOutOfMemoryException can be used to not treat an |
| * out-of-memory situation as a fatal error. This way, the contexts |
| * that did not cause the out of memory problem might be able to |
| * continue execution. |
| */ |
| static void IgnoreOutOfMemoryException(); |
| |
| /** |
| * Check if V8 is dead and therefore unusable. This is the case after |
| * fatal errors such as out-of-memory situations. |
| */ |
| static bool IsDead(); |
| |
| /** |
| * The following 4 functions are to be used when V8 is built with |
| * the 'compress_startup_data' flag enabled. In this case, the |
| * embedder must decompress startup data prior to initializing V8. |
| * |
| * This is how interaction with V8 should look like: |
| * int compressed_data_count = v8::V8::GetCompressedStartupDataCount(); |
| * v8::StartupData* compressed_data = |
| * new v8::StartupData[compressed_data_count]; |
| * v8::V8::GetCompressedStartupData(compressed_data); |
| * ... decompress data (compressed_data can be updated in-place) ... |
| * v8::V8::SetDecompressedStartupData(compressed_data); |
| * ... now V8 can be initialized |
| * ... make sure the decompressed data stays valid until V8 shutdown |
| * |
| * A helper class StartupDataDecompressor is provided. It implements |
| * the protocol of the interaction described above, and can be used in |
| * most cases instead of calling these API functions directly. |
| */ |
| static StartupData::CompressionAlgorithm GetCompressedStartupDataAlgorithm(); |
| static int GetCompressedStartupDataCount(); |
| static void GetCompressedStartupData(StartupData* compressed_data); |
| static void SetDecompressedStartupData(StartupData* decompressed_data); |
| |
| /** |
| * Adds a message listener. |
| * |
| * The same message listener can be added more than once and in that |
| * case it will be called more than once for each message. |
| * |
| * If data is specified, it will be passed to the callback when it is called. |
| * Otherwise, the exception object will be passed to the callback instead. |
| */ |
| static bool AddMessageListener(MessageCallback that, |
| Handle<Value> data = Handle<Value>()); |
| |
| /** |
| * Remove all message listeners from the specified callback function. |
| */ |
| static void RemoveMessageListeners(MessageCallback that); |
| |
| /** |
| * Tells V8 to capture current stack trace when uncaught exception occurs |
| * and report it to the message listeners. The option is off by default. |
| */ |
| static void SetCaptureStackTraceForUncaughtExceptions( |
| bool capture, |
| int frame_limit = 10, |
| StackTrace::StackTraceOptions options = StackTrace::kOverview); |
| |
| /** |
| * Sets V8 flags from a string. |
| */ |
| static void SetFlagsFromString(const char* str, int length); |
| |
| /** |
| * Sets V8 flags from the command line. |
| */ |
| static void SetFlagsFromCommandLine(int* argc, |
| char** argv, |
| bool remove_flags); |
| |
| /** Get the version string. */ |
| static const char* GetVersion(); |
| |
| /** |
| * Enables the host application to provide a mechanism for recording |
| * statistics counters. |
| */ |
| static void SetCounterFunction(CounterLookupCallback); |
| |
| /** |
| * Enables the host application to provide a mechanism for recording |
| * histograms. The CreateHistogram function returns a |
| * histogram which will later be passed to the AddHistogramSample |
| * function. |
| */ |
| static void SetCreateHistogramFunction(CreateHistogramCallback); |
| static void SetAddHistogramSampleFunction(AddHistogramSampleCallback); |
| |
| /** |
| * Enables the computation of a sliding window of states. The sliding |
| * window information is recorded in statistics counters. |
| */ |
| static void EnableSlidingStateWindow(); |
| |
| /** Callback function for reporting failed access checks.*/ |
| static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback); |
| |
| /** |
| * Enables the host application to receive a notification before a |
| * garbage collection. Allocations are not allowed in the |
| * callback function, you therefore cannot manipulate objects (set |
| * or delete properties for example) since it is possible such |
| * operations will result in the allocation of objects. It is possible |
| * to specify the GCType filter for your callback. But it is not possible to |
| * register the same callback function two times with different |
| * GCType filters. |
| */ |
| static void AddGCPrologueCallback( |
| GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll); |
| |
| /** |
| * This function removes callback which was installed by |
| * AddGCPrologueCallback function. |
| */ |
| static void RemoveGCPrologueCallback(GCPrologueCallback callback); |
| |
| /** |
| * The function is deprecated. Please use AddGCPrologueCallback instead. |
| * Enables the host application to receive a notification before a |
| * garbage collection. Allocations are not allowed in the |
| * callback function, you therefore cannot manipulate objects (set |
| * or delete properties for example) since it is possible such |
| * operations will result in the allocation of objects. |
| */ |
| static void SetGlobalGCPrologueCallback(GCCallback); |
| |
| /** |
| * Enables the host application to receive a notification after a |
| * garbage collection. Allocations are not allowed in the |
| * callback function, you therefore cannot manipulate objects (set |
| * or delete properties for example) since it is possible such |
| * operations will result in the allocation of objects. It is possible |
| * to specify the GCType filter for your callback. But it is not possible to |
| * register the same callback function two times with different |
| * GCType filters. |
| */ |
| static void AddGCEpilogueCallback( |
| GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll); |
| |
| /** |
| * This function removes callback which was installed by |
| * AddGCEpilogueCallback function. |
| */ |
| static void RemoveGCEpilogueCallback(GCEpilogueCallback callback); |
| |
| /** |
| * The function is deprecated. Please use AddGCEpilogueCallback instead. |
| * Enables the host application to receive a notification after a |
| * major garbage collection. Allocations are not allowed in the |
| * callback function, you therefore cannot manipulate objects (set |
| * or delete properties for example) since it is possible such |
| * operations will result in the allocation of objects. |
| */ |
| static void SetGlobalGCEpilogueCallback(GCCallback); |
| |
| /** |
| * Enables the host application to provide a mechanism to be notified |
| * and perform custom logging when V8 Allocates Executable Memory. |
| */ |
| static void AddMemoryAllocationCallback(MemoryAllocationCallback callback, |
| ObjectSpace space, |
| AllocationAction action); |
| |
| /** |
| * Removes callback that was installed by AddMemoryAllocationCallback. |
| */ |
| static void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback); |
| |
| /** |
| * Adds a callback to notify the host application when a script finished |
| * running. If a script re-enters the runtime during executing, the |
| * CallCompletedCallback is only invoked when the outer-most script |
| * execution ends. Executing scripts inside the callback do not trigger |
| * further callbacks. |
| */ |
| static void AddCallCompletedCallback(CallCompletedCallback callback); |
| |
| /** |
| * Removes callback that was installed by AddCallCompletedCallback. |
| */ |
| static void RemoveCallCompletedCallback(CallCompletedCallback callback); |
| |
| /** |
| * Allows the host application to group objects together. If one |
| * object in the group is alive, all objects in the group are alive. |
| * After each garbage collection, object groups are removed. It is |
| * intended to be used in the before-garbage-collection callback |
| * function, for instance to simulate DOM tree connections among JS |
| * wrapper objects. |
| * See v8-profiler.h for RetainedObjectInfo interface description. |
| */ |
| static void AddObjectGroup(Persistent<Value>* objects, |
| size_t length, |
| RetainedObjectInfo* info = NULL); |
| |
| /** |
| * Allows the host application to declare implicit references between |
| * the objects: if |parent| is alive, all |children| are alive too. |
| * After each garbage collection, all implicit references |
| * are removed. It is intended to be used in the before-garbage-collection |
| * callback function. |
| */ |
| static void AddImplicitReferences(Persistent<Object> parent, |
| Persistent<Value>* children, |
| size_t length); |
| |
| /** |
| * Initializes from snapshot if possible. Otherwise, attempts to |
| * initialize from scratch. This function is called implicitly if |
| * you use the API without calling it first. |
| */ |
| static bool Initialize(); |
| |
| /** |
| * Allows the host application to provide a callback which can be used |
| * as a source of entropy for random number generators. |
| */ |
| static void SetEntropySource(EntropySource source); |
| |
| /** |
| * Allows the host application to provide a callback that allows v8 to |
| * cooperate with a profiler that rewrites return addresses on stack. |
| */ |
| static void SetReturnAddressLocationResolver( |
| ReturnAddressLocationResolver return_address_resolver); |
| |
| /** |
| * Allows the host application to provide the address of a function that's |
| * invoked on entry to every V8-generated function. |
| * Note that \p entry_hook is invoked at the very start of each |
| * generated function. |
| * |
| * \param entry_hook a function that will be invoked on entry to every |
| * V8-generated function. |
| * \returns true on success on supported platforms, false on failure. |
| * \note Setting a new entry hook function when one is already active will |
| * fail. |
| */ |
| static bool SetFunctionEntryHook(FunctionEntryHook entry_hook); |
| |
| /** |
| * Allows the host application to provide the address of a function that is |
| * notified each time code is added, moved or removed. |
| * |
| * \param options options for the JIT code event handler. |
| * \param event_handler the JIT code event handler, which will be invoked |
| * each time code is added, moved or removed. |
| * \note \p event_handler won't get notified of existent code. |
| * \note since code removal notifications are not currently issued, the |
| * \p event_handler may get notifications of code that overlaps earlier |
| * code notifications. This happens when code areas are reused, and the |
| * earlier overlapping code areas should therefore be discarded. |
| * \note the events passed to \p event_handler and the strings they point to |
| * are not guaranteed to live past each call. The \p event_handler must |
| * copy strings and other parameters it needs to keep around. |
| * \note the set of events declared in JitCodeEvent::EventType is expected to |
| * grow over time, and the JitCodeEvent structure is expected to accrue |
| * new members. The \p event_handler function must ignore event codes |
| * it does not recognize to maintain future compatibility. |
| */ |
| static void SetJitCodeEventHandler(JitCodeEventOptions options, |
| JitCodeEventHandler event_handler); |
| |
| /** |
| * Adjusts the amount of registered external memory. Used to give |
| * V8 an indication of the amount of externally allocated memory |
| * that is kept alive by JavaScript objects. V8 uses this to decide |
| * when to perform global garbage collections. Registering |
| * externally allocated memory will trigger global garbage |
| * collections more often than otherwise in an attempt to garbage |
| * collect the JavaScript objects keeping the externally allocated |
| * memory alive. |
| * |
| * \param change_in_bytes the change in externally allocated memory |
| * that is kept alive by JavaScript objects. |
| * \returns the adjusted value. |
| */ |
| static intptr_t AdjustAmountOfExternalAllocatedMemory( |
| intptr_t change_in_bytes); |
| |
| /** |
| * Suspends recording of tick samples in the profiler. |
| * When the V8 profiling mode is enabled (usually via command line |
| * switches) this function suspends recording of tick samples. |
| * Profiling ticks are discarded until ResumeProfiler() is called. |
| * |
| * See also the --prof and --prof_auto command line switches to |
| * enable V8 profiling. |
| */ |
| static void PauseProfiler(); |
| |
| /** |
| * Resumes recording of tick samples in the profiler. |
| * See also PauseProfiler(). |
| */ |
| static void ResumeProfiler(); |
| |
| /** |
| * Return whether profiler is currently paused. |
| */ |
| static bool IsProfilerPaused(); |
| |
| /** |
| * Retrieve the V8 thread id of the calling thread. |
| * |
| * The thread id for a thread should only be retrieved after the V8 |
| * lock has been acquired with a Locker object with that thread. |
| */ |
| static int GetCurrentThreadId(); |
| |
| /** |
| * Forcefully terminate execution of a JavaScript thread. This can |
| * be used to terminate long-running scripts. |
| * |
| * TerminateExecution should only be called when then V8 lock has |
| * been acquired with a Locker object. Therefore, in order to be |
| * able to terminate long-running threads, preemption must be |
| * enabled to allow the user of TerminateExecution to acquire the |
| * lock. |
| * |
| * The termination is achieved by throwing an exception that is |
| * uncatchable by JavaScript exception handlers. Termination |
| * exceptions act as if they were caught by a C++ TryCatch exception |
| * handler. If forceful termination is used, any C++ TryCatch |
| * exception handler that catches an exception should check if that |
| * exception is a termination exception and immediately return if |
| * that is the case. Returning immediately in that case will |
| * continue the propagation of the termination exception if needed. |
| * |
| * The thread id passed to TerminateExecution must have been |
| * obtained by calling GetCurrentThreadId on the thread in question. |
| * |
| * \param thread_id The thread id of the thread to terminate. |
| */ |
| static void TerminateExecution(int thread_id); |
| |
| /** |
| * Forcefully terminate the current thread of JavaScript execution |
| * in the given isolate. If no isolate is provided, the default |
| * isolate is used. |
| * |
| * This method can be used by any thread even if that thread has not |
| * acquired the V8 lock with a Locker object. |
| * |
| * \param isolate The isolate in which to terminate the current JS execution. |
| */ |
| static void TerminateExecution(Isolate* isolate = NULL); |
| |
| /** |
| * Is V8 terminating JavaScript execution. |
| * |
| * Returns true if JavaScript execution is currently terminating |
| * because of a call to TerminateExecution. In that case there are |
| * still JavaScript frames on the stack and the termination |
| * exception is still active. |
| * |
| * \param isolate The isolate in which to check. |
| */ |
| static bool IsExecutionTerminating(Isolate* isolate = NULL); |
| |
| /** |
| * Releases any resources used by v8 and stops any utility threads |
| * that may be running. Note that disposing v8 is permanent, it |
| * cannot be reinitialized. |
| * |
| * It should generally not be necessary to dispose v8 before exiting |
| * a process, this should happen automatically. It is only necessary |
| * to use if the process needs the resources taken up by v8. |
| */ |
| static bool Dispose(); |
| |
| /** |
| * Get statistics about the heap memory usage. |
| */ |
| static void GetHeapStatistics(HeapStatistics* heap_statistics); |
| |
| /** |
| * Iterates through all external resources referenced from current isolate |
| * heap. This method is not expected to be used except for debugging purposes |
| * and may be quite slow. |
| */ |
| static void VisitExternalResources(ExternalResourceVisitor* visitor); |
| |
| /** |
| * Iterates through all the persistent handles in the current isolate's heap |
| * that have class_ids. |
| */ |
| static void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor); |
| |
| /** |
| * Optional notification that the embedder is idle. |
| * V8 uses the notification to reduce memory footprint. |
| * This call can be used repeatedly if the embedder remains idle. |
| * Returns true if the embedder should stop calling IdleNotification |
| * until real work has been done. This indicates that V8 has done |
| * as much cleanup as it will be able to do. |
| * |
| * The hint argument specifies the amount of work to be done in the function |
| * on scale from 1 to 1000. There is no guarantee that the actual work will |
| * match the hint. |
| */ |
| static bool IdleNotification(int hint = 1000); |
| |
| /** |
| * Optional notification that the system is running low on memory. |
| * V8 uses these notifications to attempt to free memory. |
| */ |
| static void LowMemoryNotification(); |
| |
| /** |
| * Optional notification that a context has been disposed. V8 uses |
| * these notifications to guide the GC heuristic. Returns the number |
| * of context disposals - including this one - since the last time |
| * V8 had a chance to clean up. |
| */ |
| static int ContextDisposedNotification(); |
| |
| private: |
| V8(); |
| |
| static internal::Object** GlobalizeReference(internal::Object** handle); |
| static void DisposeGlobal(internal::Object** global_handle); |
| static void MakeWeak(internal::Object** global_handle, |
| void* data, |
| WeakReferenceCallback); |
| static void ClearWeak(internal::Object** global_handle); |
| static void MarkIndependent(internal::Object** global_handle); |
| static bool IsGlobalIndependent(internal::Object** global_handle); |
| static bool IsGlobalNearDeath(internal::Object** global_handle); |
| static bool IsGlobalWeak(internal::Object** global_handle); |
| static void SetWrapperClassId(internal::Object** global_handle, |
| uint16_t class_id); |
| static uint16_t GetWrapperClassId(internal::Object** global_handle); |
| |
| template <class T> friend class Handle; |
| template <class T> friend class Local; |
| template <class T> friend class Persistent; |
| friend class Context; |
| }; |
| |
| |
| /** |
| * An external exception handler. |
| */ |
| class V8EXPORT TryCatch { |
| public: |
| /** |
| * Creates a new try/catch block and registers it with v8. |
| */ |
| TryCatch(); |
| |
| /** |
| * Unregisters and deletes this try/catch block. |
| */ |
| ~TryCatch(); |
| |
| /** |
| * Returns true if an exception has been caught by this try/catch block. |
| */ |
| bool HasCaught() const; |
| |
| /** |
| * For certain types of exceptions, it makes no sense to continue |
| * execution. |
| * |
| * Currently, the only type of exception that can be caught by a |
| * TryCatch handler and for which it does not make sense to continue |
| * is termination exception. Such exceptions are thrown when the |
| * TerminateExecution methods are called to terminate a long-running |
| * script. |
| * |
| * If CanContinue returns false, the correct action is to perform |
| * any C++ cleanup needed and then return. |
| */ |
| bool CanContinue() const; |
| |
| /** |
| * Throws the exception caught by this TryCatch in a way that avoids |
| * it being caught again by this same TryCatch. As with ThrowException |
| * it is illegal to execute any JavaScript operations after calling |
| * ReThrow; the caller must return immediately to where the exception |
| * is caught. |
| */ |
| Handle<Value> ReThrow(); |
| |
| /** |
| * Returns the exception caught by this try/catch block. If no exception has |
| * been caught an empty handle is returned. |
| * |
| * The returned handle is valid until this TryCatch block has been destroyed. |
| */ |
| Local<Value> Exception() const; |
| |
| /** |
| * Returns the .stack property of the thrown object. If no .stack |
| * property is present an empty handle is returned. |
| */ |
| Local<Value> StackTrace() const; |
| |
| /** |
| * Returns the message associated with this exception. If there is |
| * no message associated an empty handle is returned. |
| * |
| * The returned handle is valid until this TryCatch block has been |
| * destroyed. |
| */ |
| Local<v8::Message> Message() const; |
| |
| /** |
| * Clears any exceptions that may have been caught by this try/catch block. |
| * After this method has been called, HasCaught() will return false. |
| * |
| * It is not necessary to clear a try/catch block before using it again; if |
| * another exception is thrown the previously caught exception will just be |
| * overwritten. However, it is often a good idea since it makes it easier |
| * to determine which operation threw a given exception. |
| */ |
| void Reset(); |
| |
| /** |
| * Set verbosity of the external exception handler. |
| * |
| * By default, exceptions that are caught by an external exception |
| * handler are not reported. Call SetVerbose with true on an |
| * external exception handler to have exceptions caught by the |
| * handler reported as if they were not caught. |
| */ |
| void SetVerbose(bool value); |
| |
| /** |
| * Set whether or not this TryCatch should capture a Message object |
| * which holds source information about where the exception |
| * occurred. True by default. |
| */ |
| void SetCaptureMessage(bool value); |
| |
| private: |
| v8::internal::Isolate* isolate_; |
| void* next_; |
| void* exception_; |
| void* message_; |
| bool is_verbose_ : 1; |
| bool can_continue_ : 1; |
| bool capture_message_ : 1; |
| bool rethrow_ : 1; |
| |
| friend class v8::internal::Isolate; |
| }; |
| |
| |
| // --- Context --- |
| |
| |
| /** |
| * Ignore |
| */ |
| class V8EXPORT ExtensionConfiguration { |
| public: |
| ExtensionConfiguration(int name_count, const char* names[]) |
| : name_count_(name_count), names_(names) { } |
| private: |
| friend class ImplementationUtilities; |
| int name_count_; |
| const char** names_; |
| }; |
| |
| |
| /** |
| * A sandboxed execution context with its own set of built-in objects |
| * and functions. |
| */ |
| class V8EXPORT Context { |
| public: |
| /** |
| * Returns the global proxy object or global object itself for |
| * detached contexts. |
| * |
| * Global proxy object is a thin wrapper whose prototype points to |
| * actual context's global object with the properties like Object, etc. |
| * This is done that way for security reasons (for more details see |
| * https://wiki.mozilla.org/Gecko:SplitWindow). |
| * |
| * Please note that changes to global proxy object prototype most probably |
| * would break VM---v8 expects only global object as a prototype of |
| * global proxy object. |
| * |
| * If DetachGlobal() has been invoked, Global() would return actual global |
| * object until global is reattached with ReattachGlobal(). |
| */ |
| Local<Object> Global(); |
| |
| /** |
| * Detaches the global object from its context before |
| * the global object can be reused to create a new context. |
| */ |
| void DetachGlobal(); |
| |
| /** |
| * Reattaches a global object to a context. This can be used to |
| * restore the connection between a global object and a context |
| * after DetachGlobal has been called. |
| * |
| * \param global_object The global object to reattach to the |
| * context. For this to work, the global object must be the global |
| * object that was associated with this context before a call to |
| * DetachGlobal. |
| */ |
| void ReattachGlobal(Handle<Object> global_object); |
| |
| /** Creates a new context. |
| * |
| * Returns a persistent handle to the newly allocated context. This |
| * persistent handle has to be disposed when the context is no |
| * longer used so the context can be garbage collected. |
| * |
| * \param extensions An optional extension configuration containing |
| * the extensions to be installed in the newly created context. |
| * |
| * \param global_template An optional object template from which the |
| * global object for the newly created context will be created. |
| * |
| * \param global_object An optional global object to be reused for |
| * the newly created context. This global object must have been |
| * created by a previous call to Context::New with the same global |
| * template. The state of the global object will be completely reset |
| * and only object identify will remain. |
| */ |
| static Persistent<Context> New( |
| ExtensionConfiguration* extensions = NULL, |
| Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(), |
| Handle<Value> global_object = Handle<Value>()); |
| |
| /** Returns the last entered context. */ |
| static Local<Context> GetEntered(); |
| |
| /** Returns the context that is on the top of the stack. */ |
| static Local<Context> GetCurrent(); |
| |
| /** |
| * Returns the context of the calling JavaScript code. That is the |
| * context of the top-most JavaScript frame. If there are no |
| * JavaScript frames an empty handle is returned. |
| */ |
| static Local<Context> GetCalling(); |
| |
| /** |
| * Sets the security token for the context. To access an object in |
| * another context, the security tokens must match. |
| */ |
| void SetSecurityToken(Handle<Value> token); |
| |
| /** Restores the security token to the default value. */ |
| void UseDefaultSecurityToken(); |
| |
| /** Returns the security token of this context.*/ |
| Handle<Value> GetSecurityToken(); |
| |
| /** |
| * Enter this context. After entering a context, all code compiled |
| * and run is compiled and run in this context. If another context |
| * is already entered, this old context is saved so it can be |
| * restored when the new context is exited. |
| */ |
| void Enter(); |
| |
| /** |
| * Exit this context. Exiting the current context restores the |
| * context that was in place when entering the current context. |
| */ |
| void Exit(); |
| |
| /** Returns true if the context has experienced an out of memory situation. */ |
| bool HasOutOfMemoryException(); |
| |
| /** Returns true if V8 has a current context. */ |
| static bool InContext(); |
| |
| /** |
| * Associate an additional data object with the context. This is mainly used |
| * with the debugger to provide additional information on the context through |
| * the debugger API. |
| */ |
| void SetData(Handle<Value> data); |
| Local<Value> GetData(); |
| |
| /** |
| * Control whether code generation from strings is allowed. Calling |
| * this method with false will disable 'eval' and the 'Function' |
| * constructor for code running in this context. If 'eval' or the |
| * 'Function' constructor are used an exception will be thrown. |
| * |
| * If code generation from strings is not allowed the |
| * V8::AllowCodeGenerationFromStrings callback will be invoked if |
| * set before blocking the call to 'eval' or the 'Function' |
| * constructor. If that callback returns true, the call will be |
| * allowed, otherwise an exception will be thrown. If no callback is |
| * set an exception will be thrown. |
| */ |
| void AllowCodeGenerationFromStrings(bool allow); |
| |
| /** |
| * Returns true if code generation from strings is allowed for the context. |
| * For more details see AllowCodeGenerationFromStrings(bool) documentation. |
| */ |
| bool IsCodeGenerationFromStringsAllowed(); |
| |
| /** |
| * Sets the error description for the exception that is thrown when |
| * code generation from strings is not allowed and 'eval' or the 'Function' |
| * constructor are called. |
| */ |
| void SetErrorMessageForCodeGenerationFromStrings(Handle<String> message); |
| |
| /** |
| * Stack-allocated class which sets the execution context for all |
| * operations executed within a local scope. |
| */ |
| class Scope { |
| public: |
| explicit inline Scope(Handle<Context> context) : context_(context) { |
| context_->Enter(); |
| } |
| inline ~Scope() { context_->Exit(); } |
| private: |
| Handle<Context> context_; |
| }; |
| |
| private: |
| friend class Value; |
| friend class Script; |
| friend class Object; |
| friend class Function; |
| }; |
| |
| |
| /** |
| * Multiple threads in V8 are allowed, but only one thread at a time |
| * is allowed to use any given V8 isolate. See Isolate class |
| * comments. The definition of 'using V8 isolate' includes |
| * accessing handles or holding onto object pointers obtained |
| * from V8 handles while in the particular V8 isolate. It is up |
| * to the user of V8 to ensure (perhaps with locking) that this |
| * constraint is not violated. In addition to any other synchronization |
| * mechanism that may be used, the v8::Locker and v8::Unlocker classes |
| * must be used to signal thead switches to V8. |
| * |
| * v8::Locker is a scoped lock object. While it's |
| * active (i.e. between its construction and destruction) the current thread is |
| * allowed to use the locked isolate. V8 guarantees that an isolate can be |
| * locked by at most one thread at any time. In other words, the scope of a |
| * v8::Locker is a critical section. |
| * |
| * Sample usage: |
| * \code |
| * ... |
| * { |
| * v8::Locker locker(isolate); |
| * v8::Isolate::Scope isolate_scope(isolate); |
| * ... |
| * // Code using V8 and isolate goes here. |
| * ... |
| * } // Destructor called here |
| * \endcode |
| * |
| * If you wish to stop using V8 in a thread A you can do this either |
| * by destroying the v8::Locker object as above or by constructing a |
| * v8::Unlocker object: |
| * |
| * \code |
| * { |
| * isolate->Exit(); |
| * v8::Unlocker unlocker(isolate); |
| * ... |
| * // Code not using V8 goes here while V8 can run in another thread. |
| * ... |
| * } // Destructor called here. |
| * isolate->Enter(); |
| * \endcode |
| * |
| * The Unlocker object is intended for use in a long-running callback |
| * from V8, where you want to release the V8 lock for other threads to |
| * use. |
| * |
| * The v8::Locker is a recursive lock. That is, you can lock more than |
| * once in a given thread. This can be useful if you have code that can |
| * be called either from code that holds the lock or from code that does |
| * not. The Unlocker is not recursive so you can not have several |
| * Unlockers on the stack at once, and you can not use an Unlocker in a |
| * thread that is not inside a Locker's scope. |
| * |
| * An unlocker will unlock several lockers if it has to and reinstate |
| * the correct depth of locking on its destruction. eg.: |
| * |
| * \code |
| * // V8 not locked. |
| * { |
| * v8::Locker locker(isolate); |
| * Isolate::Scope isolate_scope(isolate); |
| * // V8 locked. |
| * { |
| * v8::Locker another_locker(isolate); |
| * // V8 still locked (2 levels). |
| * { |
| * isolate->Exit(); |
| * v8::Unlocker unlocker(isolate); |
| * // V8 not locked. |
| * } |
| * isolate->Enter(); |
| * // V8 locked again (2 levels). |
| * } |
| * // V8 still locked (1 level). |
| * } |
| * // V8 Now no longer locked. |
| * \endcode |
| * |
| * |
| */ |
| class V8EXPORT Unlocker { |
| public: |
| /** |
| * Initialize Unlocker for a given Isolate. NULL means default isolate. |
| */ |
| explicit Unlocker(Isolate* isolate = NULL); |
| ~Unlocker(); |
| private: |
| internal::Isolate* isolate_; |
| }; |
| |
| |
| class V8EXPORT Locker { |
| public: |
| /** |
| * Initialize Locker for a given Isolate. NULL means default isolate. |
| */ |
| explicit Locker(Isolate* isolate = NULL); |
| ~Locker(); |
| |
| /** |
| * Start preemption. |
| * |
| * When preemption is started, a timer is fired every n milliseconds |
| * that will switch between multiple threads that are in contention |
| * for the V8 lock. |
| */ |
| static void StartPreemption(int every_n_ms); |
| |
| /** |
| * Stop preemption. |
| */ |
| static void StopPreemption(); |
| |
| /** |
| * Returns whether or not the locker for a given isolate, or default isolate |
| * if NULL is given, is locked by the current thread. |
| */ |
| static bool IsLocked(Isolate* isolate = NULL); |
| |
| /** |
| * Returns whether v8::Locker is being used by this V8 instance. |
| */ |
| static bool IsActive(); |
| |
| private: |
| bool has_lock_; |
| bool top_level_; |
| internal::Isolate* isolate_; |
| |
| static bool active_; |
| |
| // Disallow copying and assigning. |
| Locker(const Locker&); |
| void operator=(const Locker&); |
| }; |
| |
| |
| /** |
| * A struct for exporting HeapStats data from V8, using "push" model. |
| */ |
| struct HeapStatsUpdate; |
| |
| |
| /** |
| * An interface for exporting data from V8, using "push" model. |
| */ |
| class V8EXPORT OutputStream { // NOLINT |
| public: |
| enum OutputEncoding { |
| kAscii = 0 // 7-bit ASCII. |
| }; |
| enum WriteResult { |
| kContinue = 0, |
| kAbort = 1 |
| }; |
| virtual ~OutputStream() {} |
| /** Notify about the end of stream. */ |
| virtual void EndOfStream() = 0; |
| /** Get preferred output chunk size. Called only once. */ |
| virtual int GetChunkSize() { return 1024; } |
| /** Get preferred output encoding. Called only once. */ |
| virtual OutputEncoding GetOutputEncoding() { return kAscii; } |
| /** |
| * Writes the next chunk of snapshot data into the stream. Writing |
| * can be stopped by returning kAbort as function result. EndOfStream |
| * will not be called in case writing was aborted. |
| */ |
| virtual WriteResult WriteAsciiChunk(char* data, int size) = 0; |
| /** |
| * Writes the next chunk of heap stats data into the stream. Writing |
| * can be stopped by returning kAbort as function result. EndOfStream |
| * will not be called in case writing was aborted. |
| */ |
| virtual WriteResult WriteHeapStatsChunk(HeapStatsUpdate* data, int count) { |
| return kAbort; |
| }; |
| }; |
| |
| |
| /** |
| * An interface for reporting progress and controlling long-running |
| * activities. |
| */ |
| class V8EXPORT ActivityControl { // NOLINT |
| public: |
| enum ControlOption { |
| kContinue = 0, |
| kAbort = 1 |
| }; |
| virtual ~ActivityControl() {} |
| /** |
| * Notify about current progress. The activity can be stopped by |
| * returning kAbort as the callback result. |
| */ |
| virtual ControlOption ReportProgressValue(int done, int total) = 0; |
| }; |
| |
| |
| // --- Implementation --- |
| |
| |
| namespace internal { |
| |
| const int kApiPointerSize = sizeof(void*); // NOLINT |
| const int kApiIntSize = sizeof(int); // NOLINT |
| |
| // Tag information for HeapObject. |
| const int kHeapObjectTag = 1; |
| const int kHeapObjectTagSize = 2; |
| const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1; |
| |
| // Tag information for Smi. |
| const int kSmiTag = 0; |
| const int kSmiTagSize = 1; |
| const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1; |
| |
| template <size_t ptr_size> struct SmiTagging; |
| |
| // Smi constants for 32-bit systems. |
| template <> struct SmiTagging<4> { |
| static const int kSmiShiftSize = 0; |
| static const int kSmiValueSize = 31; |
| static inline int SmiToInt(internal::Object* value) { |
| int shift_bits = kSmiTagSize + kSmiShiftSize; |
| // Throw away top 32 bits and shift down (requires >> to be sign extending). |
| return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits; |
| } |
| |
| // For 32-bit systems any 2 bytes aligned pointer can be encoded as smi |
| // with a plain reinterpret_cast. |
| static const uintptr_t kEncodablePointerMask = 0x1; |
| static const int kPointerToSmiShift = 0; |
| }; |
| |
| // Smi constants for 64-bit systems. |
| template <> struct SmiTagging<8> { |
| static const int kSmiShiftSize = 31; |
| static const int kSmiValueSize = 32; |
| static inline int SmiToInt(internal::Object* value) { |
| int shift_bits = kSmiTagSize + kSmiShiftSize; |
| // Shift down and throw away top 32 bits. |
| return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits); |
| } |
| |
| // To maximize the range of pointers that can be encoded |
| // in the available 32 bits, we require them to be 8 bytes aligned. |
| // This gives 2 ^ (32 + 3) = 32G address space covered. |
| // It might be not enough to cover stack allocated objects on some platforms. |
| static const int kPointerAlignment = 3; |
| |
| static const uintptr_t kEncodablePointerMask = |
| ~(uintptr_t(0xffffffff) << kPointerAlignment); |
| |
| static const int kPointerToSmiShift = |
| kSmiTagSize + kSmiShiftSize - kPointerAlignment; |
| }; |
| |
| typedef SmiTagging<kApiPointerSize> PlatformSmiTagging; |
| const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize; |
| const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize; |
| const uintptr_t kEncodablePointerMask = |
| PlatformSmiTagging::kEncodablePointerMask; |
| const int kPointerToSmiShift = PlatformSmiTagging::kPointerToSmiShift; |
| |
| /** |
| * This class exports constants and functionality from within v8 that |
| * is necessary to implement inline functions in the v8 api. Don't |
| * depend on functions and constants defined here. |
| */ |
| class Internals { |
| public: |
| // These values match non-compiler-dependent values defined within |
| // the implementation of v8. |
| static const int kHeapObjectMapOffset = 0; |
| static const int kMapInstanceTypeOffset = 1 * kApiPointerSize + kApiIntSize; |
| static const int kStringResourceOffset = 3 * kApiPointerSize; |
| |
| static const int kOddballKindOffset = 3 * kApiPointerSize; |
| static const int kForeignAddressOffset = kApiPointerSize; |
| static const int kJSObjectHeaderSize = 3 * kApiPointerSize; |
| static const int kFullStringRepresentationMask = 0x07; |
| static const int kStringEncodingMask = 0x4; |
| static const int kExternalTwoByteRepresentationTag = 0x02; |
| static const int kExternalAsciiRepresentationTag = 0x06; |
| |
| static const int kIsolateStateOffset = 0; |
| static const int kIsolateEmbedderDataOffset = 1 * kApiPointerSize; |
| static const int kIsolateRootsOffset = 3 * kApiPointerSize; |
| static const int kUndefinedValueRootIndex = 5; |
| static const int kNullValueRootIndex = 7; |
| static const int kTrueValueRootIndex = 8; |
| static const int kFalseValueRootIndex = 9; |
| static const int kEmptySymbolRootIndex = 117; |
| |
| static const int kJSObjectType = 0xaa; |
| static const int kFirstNonstringType = 0x80; |
| static const int kOddballType = 0x82; |
| static const int kForeignType = 0x85; |
| |
| static const int kUndefinedOddballKind = 5; |
| static const int kNullOddballKind = 3; |
| |
| static inline bool HasHeapObjectTag(internal::Object* value) { |
| return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) == |
| kHeapObjectTag); |
| } |
| |
| static inline bool HasSmiTag(internal::Object* value) { |
| return ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag); |
| } |
| |
| static inline int SmiValue(internal::Object* value) { |
| return PlatformSmiTagging::SmiToInt(value); |
| } |
| |
| static inline int GetInstanceType(internal::Object* obj) { |
| typedef internal::Object O; |
| O* map = ReadField<O*>(obj, kHeapObjectMapOffset); |
| return ReadField<uint8_t>(map, kMapInstanceTypeOffset); |
| } |
| |
| static inline int GetOddballKind(internal::Object* obj) { |
| typedef internal::Object O; |
| return SmiValue(ReadField<O*>(obj, kOddballKindOffset)); |
| } |
| |
| static inline void* GetExternalPointerFromSmi(internal::Object* value) { |
| const uintptr_t address = reinterpret_cast<uintptr_t>(value); |
| return reinterpret_cast<void*>(address >> kPointerToSmiShift); |
| } |
| |
| static inline void* GetExternalPointer(internal::Object* obj) { |
| if (HasSmiTag(obj)) { |
| return GetExternalPointerFromSmi(obj); |
| } else if (GetInstanceType(obj) == kForeignType) { |
| return ReadField<void*>(obj, kForeignAddressOffset); |
| } else { |
| return NULL; |
| } |
| } |
| |
| static inline bool IsExternalTwoByteString(int instance_type) { |
| int representation = (instance_type & kFullStringRepresentationMask); |
| return representation == kExternalTwoByteRepresentationTag; |
| } |
| |
| static inline bool IsInitialized(v8::Isolate* isolate) { |
| uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateStateOffset; |
| return *reinterpret_cast<int*>(addr) == 1; |
| } |
| |
| static inline void SetEmbedderData(v8::Isolate* isolate, void* data) { |
| uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + |
| kIsolateEmbedderDataOffset; |
| *reinterpret_cast<void**>(addr) = data; |
| } |
| |
| static inline void* GetEmbedderData(v8::Isolate* isolate) { |
| uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + |
| kIsolateEmbedderDataOffset; |
| return *reinterpret_cast<void**>(addr); |
| } |
| |
| static inline internal::Object** GetRoot(v8::Isolate* isolate, int index) { |
| uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset; |
| return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize); |
| } |
| |
| template <typename T> |
| static inline T ReadField(Object* ptr, int offset) { |
| uint8_t* addr = reinterpret_cast<uint8_t*>(ptr) + offset - kHeapObjectTag; |
| return *reinterpret_cast<T*>(addr); |
| } |
| |
| static inline bool CanCastToHeapObject(void* o) { return false; } |
| static inline bool CanCastToHeapObject(Context* o) { return true; } |
| static inline bool CanCastToHeapObject(String* o) { return true; } |
| static inline bool CanCastToHeapObject(Object* o) { return true; } |
| static inline bool CanCastToHeapObject(Message* o) { return true; } |
| static inline bool CanCastToHeapObject(StackTrace* o) { return true; } |
| static inline bool CanCastToHeapObject(StackFrame* o) { return true; } |
| }; |
| |
| } // namespace internal |
| |
| |
| template <class T> |
| Local<T>::Local() : Handle<T>() { } |
| |
| |
| template <class T> |
| Local<T> Local<T>::New(Handle<T> that) { |
| if (that.IsEmpty()) return Local<T>(); |
| T* that_ptr = *that; |
| internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr); |
| if (internal::Internals::CanCastToHeapObject(that_ptr)) { |
| return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle( |
| reinterpret_cast<internal::HeapObject*>(*p)))); |
| } |
| return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(*p))); |
| } |
| |
| |
| template <class T> |
| Persistent<T> Persistent<T>::New(Handle<T> that) { |
| if (that.IsEmpty()) return Persistent<T>(); |
| internal::Object** p = reinterpret_cast<internal::Object**>(*that); |
| return Persistent<T>(reinterpret_cast<T*>(V8::GlobalizeReference(p))); |
| } |
| |
| |
| template <class T> |
| bool Persistent<T>::IsIndependent() const { |
| if (this->IsEmpty()) return false; |
| return V8::IsGlobalIndependent(reinterpret_cast<internal::Object**>(**this)); |
| } |
| |
| |
| template <class T> |
| bool Persistent<T>::IsNearDeath() const { |
| if (this->IsEmpty()) return false; |
| return V8::IsGlobalNearDeath(reinterpret_cast<internal::Object**>(**this)); |
| } |
| |
| |
| template <class T> |
| bool Persistent<T>::IsWeak() const { |
| if (this->IsEmpty()) return false; |
| return V8::IsGlobalWeak(reinterpret_cast<internal::Object**>(**this)); |
| } |
| |
| |
| template <class T> |
| void Persistent<T>::Dispose() { |
| if (this->IsEmpty()) return; |
| V8::DisposeGlobal(reinterpret_cast<internal::Object**>(**this)); |
| } |
| |
| |
| template <class T> |
| Persistent<T>::Persistent() : Handle<T>() { } |
| |
| template <class T> |
| void Persistent<T>::MakeWeak(void* parameters, WeakReferenceCallback callback) { |
| V8::MakeWeak(reinterpret_cast<internal::Object**>(**this), |
| parameters, |
| callback); |
| } |
| |
| template <class T> |
| void Persistent<T>::ClearWeak() { |
| V8::ClearWeak(reinterpret_cast<internal::Object**>(**this)); |
| } |
| |
| template <class T> |
| void Persistent<T>::MarkIndependent() { |
| V8::MarkIndependent(reinterpret_cast<internal::Object**>(**this)); |
| } |
| |
| template <class T> |
| void Persistent<T>::SetWrapperClassId(uint16_t class_id) { |
| V8::SetWrapperClassId(reinterpret_cast<internal::Object**>(**this), class_id); |
| } |
| |
| template <class T> |
| uint16_t Persistent<T>::WrapperClassId() const { |
| return V8::GetWrapperClassId(reinterpret_cast<internal::Object**>(**this)); |
| } |
| |
| Arguments::Arguments(internal::Object** implicit_args, |
| internal::Object** values, int length, |
| bool is_construct_call) |
| : implicit_args_(implicit_args), |
| values_(values), |
| length_(length), |
| is_construct_call_(is_construct_call) { } |
| |
| |
| Local<Value> Arguments::operator[](int i) const { |
| if (i < 0 || length_ <= i) return Local<Value>(*Undefined()); |
| return Local<Value>(reinterpret_cast<Value*>(values_ - i)); |
| } |
| |
| |
| Local<Function> Arguments::Callee() const { |
| return Local<Function>(reinterpret_cast<Function*>( |
| &implicit_args_[kCalleeIndex])); |
| } |
| |
| |
| Local<Object> Arguments::This() const { |
| return Local<Object>(reinterpret_cast<Object*>(values_ + 1)); |
| } |
| |
| |
| Local<Object> Arguments::Holder() const { |
| return Local<Object>(reinterpret_cast<Object*>( |
| &implicit_args_[kHolderIndex])); |
| } |
| |
| |
| Local<Value> Arguments::Data() const { |
| return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex])); |
| } |
| |
| |
| Isolate* Arguments::GetIsolate() const { |
| return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]); |
| } |
| |
| |
| bool Arguments::IsConstructCall() const { |
| return is_construct_call_; |
| } |
| |
| |
| int Arguments::Length() const { |
| return length_; |
| } |
| |
| |
| template <class T> |
| Local<T> HandleScope::Close(Handle<T> value) { |
| internal::Object** before = reinterpret_cast<internal::Object**>(*value); |
| internal::Object** after = RawClose(before); |
| return Local<T>(reinterpret_cast<T*>(after)); |
| } |
| |
| Handle<Value> ScriptOrigin::ResourceName() const { |
| return resource_name_; |
| } |
| |
| |
| Handle<Integer> ScriptOrigin::ResourceLineOffset() const { |
| return resource_line_offset_; |
| } |
| |
| |
| Handle<Integer> ScriptOrigin::ResourceColumnOffset() const { |
| return resource_column_offset_; |
| } |
| |
| |
| Handle<Boolean> Boolean::New(bool value) { |
| return value ? True() : False(); |
| } |
| |
| |
| void Template::Set(const char* name, v8::Handle<Data> value) { |
| Set(v8::String::New(name), value); |
| } |
| |
| |
| Local<Value> Object::GetInternalField(int index) { |
| #ifndef V8_ENABLE_CHECKS |
| Local<Value> quick_result = UncheckedGetInternalField(index); |
| if (!quick_result.IsEmpty()) return quick_result; |
| #endif |
| return CheckedGetInternalField(index); |
| } |
| |
| |
| Local<Value> Object::UncheckedGetInternalField(int index) { |
| typedef internal::Object O; |
| typedef internal::Internals I; |
| O* obj = *reinterpret_cast<O**>(this); |
| if (I::GetInstanceType(obj) == I::kJSObjectType) { |
| // If the object is a plain JSObject, which is the common case, |
| // we know where to find the internal fields and can return the |
| // value directly. |
| int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index); |
| O* value = I::ReadField<O*>(obj, offset); |
| O** result = HandleScope::CreateHandle(value); |
| return Local<Value>(reinterpret_cast<Value*>(result)); |
| } else { |
| return Local<Value>(); |
| } |
| } |
| |
| |
| void* External::Unwrap(Handle<v8::Value> obj) { |
| #ifdef V8_ENABLE_CHECKS |
| return FullUnwrap(obj); |
| #else |
| return QuickUnwrap(obj); |
| #endif |
| } |
| |
| |
| void* External::QuickUnwrap(Handle<v8::Value> wrapper) { |
| typedef internal::Object O; |
| O* obj = *reinterpret_cast<O**>(const_cast<v8::Value*>(*wrapper)); |
| return internal::Internals::GetExternalPointer(obj); |
| } |
| |
| |
| void* Object::GetPointerFromInternalField(int index) { |
| typedef internal::Object O; |
| typedef internal::Internals I; |
| |
| O* obj = *reinterpret_cast<O**>(this); |
| |
| if (I::GetInstanceType(obj) == I::kJSObjectType) { |
| // If the object is a plain JSObject, which is the common case, |
| // we know where to find the internal fields and can return the |
| // value directly. |
| int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index); |
| O* value = I::ReadField<O*>(obj, offset); |
| return I::GetExternalPointer(value); |
| } |
| |
| return SlowGetPointerFromInternalField(index); |
| } |
| |
| |
| String* String::Cast(v8::Value* value) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckCast(value); |
| #endif |
| return static_cast<String*>(value); |
| } |
| |
| |
| Local<String> String::Empty(Isolate* isolate) { |
| typedef internal::Object* S; |
| typedef internal::Internals I; |
| if (!I::IsInitialized(isolate)) return Empty(); |
| S* slot = I::GetRoot(isolate, I::kEmptySymbolRootIndex); |
| return Local<String>(reinterpret_cast<String*>(slot)); |
| } |
| |
| |
| String::ExternalStringResource* String::GetExternalStringResource() const { |
| typedef internal::Object O; |
| typedef internal::Internals I; |
| O* obj = *reinterpret_cast<O**>(const_cast<String*>(this)); |
| String::ExternalStringResource* result; |
| if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) { |
| void* value = I::ReadField<void*>(obj, I::kStringResourceOffset); |
| result = reinterpret_cast<String::ExternalStringResource*>(value); |
| } else { |
| result = NULL; |
| } |
| #ifdef V8_ENABLE_CHECKS |
| VerifyExternalStringResource(result); |
| #endif |
| return result; |
| } |
| |
| |
| String::ExternalStringResourceBase* String::GetExternalStringResourceBase( |
| String::Encoding* encoding_out) const { |
| typedef internal::Object O; |
| typedef internal::Internals I; |
| O* obj = *reinterpret_cast<O**>(const_cast<String*>(this)); |
| int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask; |
| *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask); |
| ExternalStringResourceBase* resource = NULL; |
| if (type == I::kExternalAsciiRepresentationTag || |
| type == I::kExternalTwoByteRepresentationTag) { |
| void* value = I::ReadField<void*>(obj, I::kStringResourceOffset); |
| resource = static_cast<ExternalStringResourceBase*>(value); |
| } |
| #ifdef V8_ENABLE_CHECKS |
| VerifyExternalStringResourceBase(resource, *encoding_out); |
| #endif |
| return resource; |
| } |
| |
| |
| bool Value::IsUndefined() const { |
| #ifdef V8_ENABLE_CHECKS |
| return FullIsUndefined(); |
| #else |
| return QuickIsUndefined(); |
| #endif |
| } |
| |
| bool Value::QuickIsUndefined() const { |
| typedef internal::Object O; |
| typedef internal::Internals I; |
| O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this)); |
| if (!I::HasHeapObjectTag(obj)) return false; |
| if (I::GetInstanceType(obj) != I::kOddballType) return false; |
| return (I::GetOddballKind(obj) == I::kUndefinedOddballKind); |
| } |
| |
| |
| bool Value::IsNull() const { |
| #ifdef V8_ENABLE_CHECKS |
| return FullIsNull(); |
| #else |
| return QuickIsNull(); |
| #endif |
| } |
| |
| bool Value::QuickIsNull() const { |
| typedef internal::Object O; |
| typedef internal::Internals I; |
| O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this)); |
| if (!I::HasHeapObjectTag(obj)) return false; |
| if (I::GetInstanceType(obj) != I::kOddballType) return false; |
| return (I::GetOddballKind(obj) == I::kNullOddballKind); |
| } |
| |
| |
| bool Value::IsString() const { |
| #ifdef V8_ENABLE_CHECKS |
| return FullIsString(); |
| #else |
| return QuickIsString(); |
| #endif |
| } |
| |
| bool Value::QuickIsString() const { |
| typedef internal::Object O; |
| typedef internal::Internals I; |
| O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this)); |
| if (!I::HasHeapObjectTag(obj)) return false; |
| return (I::GetInstanceType(obj) < I::kFirstNonstringType); |
| } |
| |
| |
| Number* Number::Cast(v8::Value* value) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckCast(value); |
| #endif |
| return static_cast<Number*>(value); |
| } |
| |
| |
| Integer* Integer::Cast(v8::Value* value) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckCast(value); |
| #endif |
| return static_cast<Integer*>(value); |
| } |
| |
| |
| Date* Date::Cast(v8::Value* value) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckCast(value); |
| #endif |
| return static_cast<Date*>(value); |
| } |
| |
| |
| StringObject* StringObject::Cast(v8::Value* value) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckCast(value); |
| #endif |
| return static_cast<StringObject*>(value); |
| } |
| |
| |
| NumberObject* NumberObject::Cast(v8::Value* value) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckCast(value); |
| #endif |
| return static_cast<NumberObject*>(value); |
| } |
| |
| |
| BooleanObject* BooleanObject::Cast(v8::Value* value) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckCast(value); |
| #endif |
| return static_cast<BooleanObject*>(value); |
| } |
| |
| |
| RegExp* RegExp::Cast(v8::Value* value) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckCast(value); |
| #endif |
| return static_cast<RegExp*>(value); |
| } |
| |
| |
| Object* Object::Cast(v8::Value* value) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckCast(value); |
| #endif |
| return static_cast<Object*>(value); |
| } |
| |
| |
| Array* Array::Cast(v8::Value* value) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckCast(value); |
| #endif |
| return static_cast<Array*>(value); |
| } |
| |
| |
| Function* Function::Cast(v8::Value* value) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckCast(value); |
| #endif |
| return static_cast<Function*>(value); |
| } |
| |
| |
| External* External::Cast(v8::Value* value) { |
| #ifdef V8_ENABLE_CHECKS |
| CheckCast(value); |
| #endif |
| return static_cast<External*>(value); |
| } |
| |
| |
| Isolate* AccessorInfo::GetIsolate() const { |
| return *reinterpret_cast<Isolate**>(&args_[-3]); |
| } |
| |
| |
| Local<Value> AccessorInfo::Data() const { |
| return Local<Value>(reinterpret_cast<Value*>(&args_[-2])); |
| } |
| |
| |
| Local<Object> AccessorInfo::This() const { |
| return Local<Object>(reinterpret_cast<Object*>(&args_[0])); |
| } |
| |
| |
| Local<Object> AccessorInfo::Holder() const { |
| return Local<Object>(reinterpret_cast<Object*>(&args_[-1])); |
| } |
| |
| |
| Handle<Primitive> Undefined(Isolate* isolate) { |
| typedef internal::Object* S; |
| typedef internal::Internals I; |
| if (!I::IsInitialized(isolate)) return Undefined(); |
| S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex); |
| return Handle<Primitive>(reinterpret_cast<Primitive*>(slot)); |
| } |
| |
| |
| Handle<Primitive> Null(Isolate* isolate) { |
| typedef internal::Object* S; |
| typedef internal::Internals I; |
| if (!I::IsInitialized(isolate)) return Null(); |
| S* slot = I::GetRoot(isolate, I::kNullValueRootIndex); |
| return Handle<Primitive>(reinterpret_cast<Primitive*>(slot)); |
| } |
| |
| |
| Handle<Boolean> True(Isolate* isolate) { |
| typedef internal::Object* S; |
| typedef internal::Internals I; |
| if (!I::IsInitialized(isolate)) return True(); |
| S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex); |
| return Handle<Boolean>(reinterpret_cast<Boolean*>(slot)); |
| } |
| |
| |
| Handle<Boolean> False(Isolate* isolate) { |
| typedef internal::Object* S; |
| typedef internal::Internals I; |
| if (!I::IsInitialized(isolate)) return False(); |
| S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex); |
| return Handle<Boolean>(reinterpret_cast<Boolean*>(slot)); |
| } |
| |
| |
| void Isolate::SetData(void* data) { |
| typedef internal::Internals I; |
| I::SetEmbedderData(this, data); |
| } |
| |
| |
| void* Isolate::GetData() { |
| typedef internal::Internals I; |
| return I::GetEmbedderData(this); |
| } |
| |
| |
| /** |
| * \example shell.cc |
| * A simple shell that takes a list of expressions on the |
| * command-line and executes them. |
| */ |
| |
| |
| /** |
| * \example process.cc |
| */ |
| |
| |
| } // namespace v8 |
| |
| |
| #undef V8EXPORT |
| #undef TYPE_CHECK |
| |
| |
| #endif // V8_H_ |