| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_ |
| #define V8_IA32_MACRO_ASSEMBLER_IA32_H_ |
| |
| #include "assembler.h" |
| #include "frames.h" |
| #include "v8globals.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Flags used for the AllocateInNewSpace functions. |
| enum AllocationFlags { |
| // No special flags. |
| NO_ALLOCATION_FLAGS = 0, |
| // Return the pointer to the allocated already tagged as a heap object. |
| TAG_OBJECT = 1 << 0, |
| // The content of the result register already contains the allocation top in |
| // new space. |
| RESULT_CONTAINS_TOP = 1 << 1 |
| }; |
| |
| |
| // Convenience for platform-independent signatures. We do not normally |
| // distinguish memory operands from other operands on ia32. |
| typedef Operand MemOperand; |
| |
| enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; |
| enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; |
| |
| |
| bool AreAliased(Register r1, Register r2, Register r3, Register r4); |
| |
| |
| // MacroAssembler implements a collection of frequently used macros. |
| class MacroAssembler: public Assembler { |
| public: |
| // The isolate parameter can be NULL if the macro assembler should |
| // not use isolate-dependent functionality. In this case, it's the |
| // responsibility of the caller to never invoke such function on the |
| // macro assembler. |
| MacroAssembler(Isolate* isolate, void* buffer, int size); |
| |
| // --------------------------------------------------------------------------- |
| // GC Support |
| enum RememberedSetFinalAction { |
| kReturnAtEnd, |
| kFallThroughAtEnd |
| }; |
| |
| // Record in the remembered set the fact that we have a pointer to new space |
| // at the address pointed to by the addr register. Only works if addr is not |
| // in new space. |
| void RememberedSetHelper(Register object, // Used for debug code. |
| Register addr, |
| Register scratch, |
| SaveFPRegsMode save_fp, |
| RememberedSetFinalAction and_then); |
| |
| void CheckPageFlag(Register object, |
| Register scratch, |
| int mask, |
| Condition cc, |
| Label* condition_met, |
| Label::Distance condition_met_distance = Label::kFar); |
| |
| void CheckPageFlagForMap( |
| Handle<Map> map, |
| int mask, |
| Condition cc, |
| Label* condition_met, |
| Label::Distance condition_met_distance = Label::kFar); |
| |
| // Check if object is in new space. Jumps if the object is not in new space. |
| // The register scratch can be object itself, but scratch will be clobbered. |
| void JumpIfNotInNewSpace(Register object, |
| Register scratch, |
| Label* branch, |
| Label::Distance distance = Label::kFar) { |
| InNewSpace(object, scratch, zero, branch, distance); |
| } |
| |
| // Check if object is in new space. Jumps if the object is in new space. |
| // The register scratch can be object itself, but it will be clobbered. |
| void JumpIfInNewSpace(Register object, |
| Register scratch, |
| Label* branch, |
| Label::Distance distance = Label::kFar) { |
| InNewSpace(object, scratch, not_zero, branch, distance); |
| } |
| |
| // Check if an object has a given incremental marking color. Also uses ecx! |
| void HasColor(Register object, |
| Register scratch0, |
| Register scratch1, |
| Label* has_color, |
| Label::Distance has_color_distance, |
| int first_bit, |
| int second_bit); |
| |
| void JumpIfBlack(Register object, |
| Register scratch0, |
| Register scratch1, |
| Label* on_black, |
| Label::Distance on_black_distance = Label::kFar); |
| |
| // Checks the color of an object. If the object is already grey or black |
| // then we just fall through, since it is already live. If it is white and |
| // we can determine that it doesn't need to be scanned, then we just mark it |
| // black and fall through. For the rest we jump to the label so the |
| // incremental marker can fix its assumptions. |
| void EnsureNotWhite(Register object, |
| Register scratch1, |
| Register scratch2, |
| Label* object_is_white_and_not_data, |
| Label::Distance distance); |
| |
| // Notify the garbage collector that we wrote a pointer into an object. |
| // |object| is the object being stored into, |value| is the object being |
| // stored. value and scratch registers are clobbered by the operation. |
| // The offset is the offset from the start of the object, not the offset from |
| // the tagged HeapObject pointer. For use with FieldOperand(reg, off). |
| void RecordWriteField( |
| Register object, |
| int offset, |
| Register value, |
| Register scratch, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
| SmiCheck smi_check = INLINE_SMI_CHECK); |
| |
| // As above, but the offset has the tag presubtracted. For use with |
| // Operand(reg, off). |
| void RecordWriteContextSlot( |
| Register context, |
| int offset, |
| Register value, |
| Register scratch, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
| SmiCheck smi_check = INLINE_SMI_CHECK) { |
| RecordWriteField(context, |
| offset + kHeapObjectTag, |
| value, |
| scratch, |
| save_fp, |
| remembered_set_action, |
| smi_check); |
| } |
| |
| // Notify the garbage collector that we wrote a pointer into a fixed array. |
| // |array| is the array being stored into, |value| is the |
| // object being stored. |index| is the array index represented as a |
| // Smi. All registers are clobbered by the operation RecordWriteArray |
| // filters out smis so it does not update the write barrier if the |
| // value is a smi. |
| void RecordWriteArray( |
| Register array, |
| Register value, |
| Register index, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
| SmiCheck smi_check = INLINE_SMI_CHECK); |
| |
| // For page containing |object| mark region covering |address| |
| // dirty. |object| is the object being stored into, |value| is the |
| // object being stored. The address and value registers are clobbered by the |
| // operation. RecordWrite filters out smis so it does not update the |
| // write barrier if the value is a smi. |
| void RecordWrite( |
| Register object, |
| Register address, |
| Register value, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
| SmiCheck smi_check = INLINE_SMI_CHECK); |
| |
| // For page containing |object| mark the region covering the object's map |
| // dirty. |object| is the object being stored into, |map| is the Map object |
| // that was stored. |
| void RecordWriteForMap( |
| Register object, |
| Handle<Map> map, |
| Register scratch1, |
| Register scratch2, |
| SaveFPRegsMode save_fp); |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| // --------------------------------------------------------------------------- |
| // Debugger Support |
| |
| void DebugBreak(); |
| #endif |
| |
| // Enter specific kind of exit frame. Expects the number of |
| // arguments in register eax and sets up the number of arguments in |
| // register edi and the pointer to the first argument in register |
| // esi. |
| void EnterExitFrame(bool save_doubles); |
| |
| void EnterApiExitFrame(int argc); |
| |
| // Leave the current exit frame. Expects the return value in |
| // register eax:edx (untouched) and the pointer to the first |
| // argument in register esi. |
| void LeaveExitFrame(bool save_doubles); |
| |
| // Leave the current exit frame. Expects the return value in |
| // register eax (untouched). |
| void LeaveApiExitFrame(); |
| |
| // Find the function context up the context chain. |
| void LoadContext(Register dst, int context_chain_length); |
| |
| // Conditionally load the cached Array transitioned map of type |
| // transitioned_kind from the native context if the map in register |
| // map_in_out is the cached Array map in the native context of |
| // expected_kind. |
| void LoadTransitionedArrayMapConditional( |
| ElementsKind expected_kind, |
| ElementsKind transitioned_kind, |
| Register map_in_out, |
| Register scratch, |
| Label* no_map_match); |
| |
| // Load the initial map for new Arrays from a JSFunction. |
| void LoadInitialArrayMap(Register function_in, |
| Register scratch, |
| Register map_out, |
| bool can_have_holes); |
| |
| // Load the global function with the given index. |
| void LoadGlobalFunction(int index, Register function); |
| |
| // Load the initial map from the global function. The registers |
| // function and map can be the same. |
| void LoadGlobalFunctionInitialMap(Register function, Register map); |
| |
| // Push and pop the registers that can hold pointers. |
| void PushSafepointRegisters() { pushad(); } |
| void PopSafepointRegisters() { popad(); } |
| // Store the value in register/immediate src in the safepoint |
| // register stack slot for register dst. |
| void StoreToSafepointRegisterSlot(Register dst, Register src); |
| void StoreToSafepointRegisterSlot(Register dst, Immediate src); |
| void LoadFromSafepointRegisterSlot(Register dst, Register src); |
| |
| void LoadHeapObject(Register result, Handle<HeapObject> object); |
| void PushHeapObject(Handle<HeapObject> object); |
| |
| void LoadObject(Register result, Handle<Object> object) { |
| if (object->IsHeapObject()) { |
| LoadHeapObject(result, Handle<HeapObject>::cast(object)); |
| } else { |
| Set(result, Immediate(object)); |
| } |
| } |
| |
| // --------------------------------------------------------------------------- |
| // JavaScript invokes |
| |
| // Set up call kind marking in ecx. The method takes ecx as an |
| // explicit first parameter to make the code more readable at the |
| // call sites. |
| void SetCallKind(Register dst, CallKind kind); |
| |
| // Invoke the JavaScript function code by either calling or jumping. |
| void InvokeCode(Register code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| InvokeCode(Operand(code), expected, actual, flag, call_wrapper, call_kind); |
| } |
| |
| void InvokeCode(const Operand& code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind); |
| |
| void InvokeCode(Handle<Code> code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| RelocInfo::Mode rmode, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind); |
| |
| // Invoke the JavaScript function in the given register. Changes the |
| // current context to the context in the function before invoking. |
| void InvokeFunction(Register function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind); |
| |
| void InvokeFunction(Handle<JSFunction> function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind); |
| |
| // Invoke specified builtin JavaScript function. Adds an entry to |
| // the unresolved list if the name does not resolve. |
| void InvokeBuiltin(Builtins::JavaScript id, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper = NullCallWrapper()); |
| |
| // Store the function for the given builtin in the target register. |
| void GetBuiltinFunction(Register target, Builtins::JavaScript id); |
| |
| // Store the code object for the given builtin in the target register. |
| void GetBuiltinEntry(Register target, Builtins::JavaScript id); |
| |
| // Expression support |
| void Set(Register dst, const Immediate& x); |
| void Set(const Operand& dst, const Immediate& x); |
| |
| // Support for constant splitting. |
| bool IsUnsafeImmediate(const Immediate& x); |
| void SafeSet(Register dst, const Immediate& x); |
| void SafePush(const Immediate& x); |
| |
| // Compare against a known root, e.g. undefined, null, true, ... |
| void CompareRoot(Register with, Heap::RootListIndex index); |
| void CompareRoot(const Operand& with, Heap::RootListIndex index); |
| |
| // Compare object type for heap object. |
| // Incoming register is heap_object and outgoing register is map. |
| void CmpObjectType(Register heap_object, InstanceType type, Register map); |
| |
| // Compare instance type for map. |
| void CmpInstanceType(Register map, InstanceType type); |
| |
| // Check if a map for a JSObject indicates that the object has fast elements. |
| // Jump to the specified label if it does not. |
| void CheckFastElements(Register map, |
| Label* fail, |
| Label::Distance distance = Label::kFar); |
| |
| // Check if a map for a JSObject indicates that the object can have both smi |
| // and HeapObject elements. Jump to the specified label if it does not. |
| void CheckFastObjectElements(Register map, |
| Label* fail, |
| Label::Distance distance = Label::kFar); |
| |
| // Check if a map for a JSObject indicates that the object has fast smi only |
| // elements. Jump to the specified label if it does not. |
| void CheckFastSmiElements(Register map, |
| Label* fail, |
| Label::Distance distance = Label::kFar); |
| |
| // Check to see if maybe_number can be stored as a double in |
| // FastDoubleElements. If it can, store it at the index specified by key in |
| // the FastDoubleElements array elements, otherwise jump to fail. |
| void StoreNumberToDoubleElements(Register maybe_number, |
| Register elements, |
| Register key, |
| Register scratch1, |
| XMMRegister scratch2, |
| Label* fail, |
| bool specialize_for_processor); |
| |
| // Compare an object's map with the specified map and its transitioned |
| // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. FLAGS are set with |
| // result of map compare. If multiple map compares are required, the compare |
| // sequences branches to early_success. |
| void CompareMap(Register obj, |
| Handle<Map> map, |
| Label* early_success, |
| CompareMapMode mode = REQUIRE_EXACT_MAP); |
| |
| // Check if the map of an object is equal to a specified map and branch to |
| // label if not. Skip the smi check if not required (object is known to be a |
| // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match |
| // against maps that are ElementsKind transition maps of the specified map. |
| void CheckMap(Register obj, |
| Handle<Map> map, |
| Label* fail, |
| SmiCheckType smi_check_type, |
| CompareMapMode mode = REQUIRE_EXACT_MAP); |
| |
| // Check if the map of an object is equal to a specified map and branch to a |
| // specified target if equal. Skip the smi check if not required (object is |
| // known to be a heap object) |
| void DispatchMap(Register obj, |
| Handle<Map> map, |
| Handle<Code> success, |
| SmiCheckType smi_check_type); |
| |
| // Check if the object in register heap_object is a string. Afterwards the |
| // register map contains the object map and the register instance_type |
| // contains the instance_type. The registers map and instance_type can be the |
| // same in which case it contains the instance type afterwards. Either of the |
| // registers map and instance_type can be the same as heap_object. |
| Condition IsObjectStringType(Register heap_object, |
| Register map, |
| Register instance_type); |
| |
| // Check if a heap object's type is in the JSObject range, not including |
| // JSFunction. The object's map will be loaded in the map register. |
| // Any or all of the three registers may be the same. |
| // The contents of the scratch register will always be overwritten. |
| void IsObjectJSObjectType(Register heap_object, |
| Register map, |
| Register scratch, |
| Label* fail); |
| |
| // The contents of the scratch register will be overwritten. |
| void IsInstanceJSObjectType(Register map, Register scratch, Label* fail); |
| |
| // FCmp is similar to integer cmp, but requires unsigned |
| // jcc instructions (je, ja, jae, jb, jbe, je, and jz). |
| void FCmp(); |
| |
| void ClampUint8(Register reg); |
| |
| void ClampDoubleToUint8(XMMRegister input_reg, |
| XMMRegister scratch_reg, |
| Register result_reg); |
| |
| |
| // Smi tagging support. |
| void SmiTag(Register reg) { |
| STATIC_ASSERT(kSmiTag == 0); |
| STATIC_ASSERT(kSmiTagSize == 1); |
| add(reg, reg); |
| } |
| void SmiUntag(Register reg) { |
| sar(reg, kSmiTagSize); |
| } |
| |
| // Modifies the register even if it does not contain a Smi! |
| void SmiUntag(Register reg, Label* is_smi) { |
| STATIC_ASSERT(kSmiTagSize == 1); |
| sar(reg, kSmiTagSize); |
| STATIC_ASSERT(kSmiTag == 0); |
| j(not_carry, is_smi); |
| } |
| |
| void LoadUint32(XMMRegister dst, Register src, XMMRegister scratch); |
| |
| // Jump the register contains a smi. |
| inline void JumpIfSmi(Register value, |
| Label* smi_label, |
| Label::Distance distance = Label::kFar) { |
| test(value, Immediate(kSmiTagMask)); |
| j(zero, smi_label, distance); |
| } |
| // Jump if the operand is a smi. |
| inline void JumpIfSmi(Operand value, |
| Label* smi_label, |
| Label::Distance distance = Label::kFar) { |
| test(value, Immediate(kSmiTagMask)); |
| j(zero, smi_label, distance); |
| } |
| // Jump if register contain a non-smi. |
| inline void JumpIfNotSmi(Register value, |
| Label* not_smi_label, |
| Label::Distance distance = Label::kFar) { |
| test(value, Immediate(kSmiTagMask)); |
| j(not_zero, not_smi_label, distance); |
| } |
| |
| void LoadInstanceDescriptors(Register map, Register descriptors); |
| void EnumLength(Register dst, Register map); |
| void NumberOfOwnDescriptors(Register dst, Register map); |
| |
| template<typename Field> |
| void DecodeField(Register reg) { |
| static const int shift = Field::kShift; |
| static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize; |
| sar(reg, shift); |
| and_(reg, Immediate(mask)); |
| } |
| void LoadPowerOf2(XMMRegister dst, Register scratch, int power); |
| |
| // Abort execution if argument is not a number, enabled via --debug-code. |
| void AssertNumber(Register object); |
| |
| // Abort execution if argument is not a smi, enabled via --debug-code. |
| void AssertSmi(Register object); |
| |
| // Abort execution if argument is a smi, enabled via --debug-code. |
| void AssertNotSmi(Register object); |
| |
| // Abort execution if argument is not a string, enabled via --debug-code. |
| void AssertString(Register object); |
| |
| // --------------------------------------------------------------------------- |
| // Exception handling |
| |
| // Push a new try handler and link it into try handler chain. |
| void PushTryHandler(StackHandler::Kind kind, int handler_index); |
| |
| // Unlink the stack handler on top of the stack from the try handler chain. |
| void PopTryHandler(); |
| |
| // Throw to the top handler in the try hander chain. |
| void Throw(Register value); |
| |
| // Throw past all JS frames to the top JS entry frame. |
| void ThrowUncatchable(Register value); |
| |
| // --------------------------------------------------------------------------- |
| // Inline caching support |
| |
| // Generate code for checking access rights - used for security checks |
| // on access to global objects across environments. The holder register |
| // is left untouched, but the scratch register is clobbered. |
| void CheckAccessGlobalProxy(Register holder_reg, |
| Register scratch, |
| Label* miss); |
| |
| void GetNumberHash(Register r0, Register scratch); |
| |
| void LoadFromNumberDictionary(Label* miss, |
| Register elements, |
| Register key, |
| Register r0, |
| Register r1, |
| Register r2, |
| Register result); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Allocation support |
| |
| // Allocate an object in new space. If the new space is exhausted control |
| // continues at the gc_required label. The allocated object is returned in |
| // result and end of the new object is returned in result_end. The register |
| // scratch can be passed as no_reg in which case an additional object |
| // reference will be added to the reloc info. The returned pointers in result |
| // and result_end have not yet been tagged as heap objects. If |
| // result_contains_top_on_entry is true the content of result is known to be |
| // the allocation top on entry (could be result_end from a previous call to |
| // AllocateInNewSpace). If result_contains_top_on_entry is true scratch |
| // should be no_reg as it is never used. |
| void AllocateInNewSpace(int object_size, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags); |
| |
| void AllocateInNewSpace(int header_size, |
| ScaleFactor element_size, |
| Register element_count, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags); |
| |
| void AllocateInNewSpace(Register object_size, |
| Register result, |
| Register result_end, |
| Register scratch, |
| Label* gc_required, |
| AllocationFlags flags); |
| |
| // Undo allocation in new space. The object passed and objects allocated after |
| // it will no longer be allocated. Make sure that no pointers are left to the |
| // object(s) no longer allocated as they would be invalid when allocation is |
| // un-done. |
| void UndoAllocationInNewSpace(Register object); |
| |
| // Allocate a heap number in new space with undefined value. The |
| // register scratch2 can be passed as no_reg; the others must be |
| // valid registers. Returns tagged pointer in result register, or |
| // jumps to gc_required if new space is full. |
| void AllocateHeapNumber(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| |
| // Allocate a sequential string. All the header fields of the string object |
| // are initialized. |
| void AllocateTwoByteString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required); |
| void AllocateAsciiString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required); |
| void AllocateAsciiString(Register result, |
| int length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| |
| // Allocate a raw cons string object. Only the map field of the result is |
| // initialized. |
| void AllocateTwoByteConsString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| void AllocateAsciiConsString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| |
| // Allocate a raw sliced string object. Only the map field of the result is |
| // initialized. |
| void AllocateTwoByteSlicedString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| void AllocateAsciiSlicedString(Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required); |
| |
| // Copy memory, byte-by-byte, from source to destination. Not optimized for |
| // long or aligned copies. |
| // The contents of index and scratch are destroyed. |
| void CopyBytes(Register source, |
| Register destination, |
| Register length, |
| Register scratch); |
| |
| // Initialize fields with filler values. Fields starting at |start_offset| |
| // not including end_offset are overwritten with the value in |filler|. At |
| // the end the loop, |start_offset| takes the value of |end_offset|. |
| void InitializeFieldsWithFiller(Register start_offset, |
| Register end_offset, |
| Register filler); |
| |
| // --------------------------------------------------------------------------- |
| // Support functions. |
| |
| // Check a boolean-bit of a Smi field. |
| void BooleanBitTest(Register object, int field_offset, int bit_index); |
| |
| // Check if result is zero and op is negative. |
| void NegativeZeroTest(Register result, Register op, Label* then_label); |
| |
| // Check if result is zero and any of op1 and op2 are negative. |
| // Register scratch is destroyed, and it must be different from op2. |
| void NegativeZeroTest(Register result, Register op1, Register op2, |
| Register scratch, Label* then_label); |
| |
| // Try to get function prototype of a function and puts the value in |
| // the result register. Checks that the function really is a |
| // function and jumps to the miss label if the fast checks fail. The |
| // function register will be untouched; the other registers may be |
| // clobbered. |
| void TryGetFunctionPrototype(Register function, |
| Register result, |
| Register scratch, |
| Label* miss, |
| bool miss_on_bound_function = false); |
| |
| // Generates code for reporting that an illegal operation has |
| // occurred. |
| void IllegalOperation(int num_arguments); |
| |
| // Picks out an array index from the hash field. |
| // Register use: |
| // hash - holds the index's hash. Clobbered. |
| // index - holds the overwritten index on exit. |
| void IndexFromHash(Register hash, Register index); |
| |
| // --------------------------------------------------------------------------- |
| // Runtime calls |
| |
| // Call a code stub. Generate the code if necessary. |
| void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None()); |
| |
| // Tail call a code stub (jump). Generate the code if necessary. |
| void TailCallStub(CodeStub* stub); |
| |
| // Return from a code stub after popping its arguments. |
| void StubReturn(int argc); |
| |
| // Call a runtime routine. |
| void CallRuntime(const Runtime::Function* f, int num_arguments); |
| void CallRuntimeSaveDoubles(Runtime::FunctionId id); |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| void CallRuntime(Runtime::FunctionId id, int num_arguments); |
| |
| // Convenience function: call an external reference. |
| void CallExternalReference(ExternalReference ref, int num_arguments); |
| |
| // Tail call of a runtime routine (jump). |
| // Like JumpToExternalReference, but also takes care of passing the number |
| // of parameters. |
| void TailCallExternalReference(const ExternalReference& ext, |
| int num_arguments, |
| int result_size); |
| |
| // Convenience function: tail call a runtime routine (jump). |
| void TailCallRuntime(Runtime::FunctionId fid, |
| int num_arguments, |
| int result_size); |
| |
| // Before calling a C-function from generated code, align arguments on stack. |
| // After aligning the frame, arguments must be stored in esp[0], esp[4], |
| // etc., not pushed. The argument count assumes all arguments are word sized. |
| // Some compilers/platforms require the stack to be aligned when calling |
| // C++ code. |
| // Needs a scratch register to do some arithmetic. This register will be |
| // trashed. |
| void PrepareCallCFunction(int num_arguments, Register scratch); |
| |
| // Calls a C function and cleans up the space for arguments allocated |
| // by PrepareCallCFunction. The called function is not allowed to trigger a |
| // garbage collection, since that might move the code and invalidate the |
| // return address (unless this is somehow accounted for by the called |
| // function). |
| void CallCFunction(ExternalReference function, int num_arguments); |
| void CallCFunction(Register function, int num_arguments); |
| |
| // Prepares stack to put arguments (aligns and so on). Reserves |
| // space for return value if needed (assumes the return value is a handle). |
| // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1) |
| // etc. Saves context (esi). If space was reserved for return value then |
| // stores the pointer to the reserved slot into esi. |
| void PrepareCallApiFunction(int argc); |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. Clobbers ebx, edi and |
| // caller-save registers. Restores context. On return removes |
| // stack_space * kPointerSize (GCed). |
| void CallApiFunctionAndReturn(Address function_address, int stack_space); |
| |
| // Jump to a runtime routine. |
| void JumpToExternalReference(const ExternalReference& ext); |
| |
| // --------------------------------------------------------------------------- |
| // Utilities |
| |
| void Ret(); |
| |
| // Return and drop arguments from stack, where the number of arguments |
| // may be bigger than 2^16 - 1. Requires a scratch register. |
| void Ret(int bytes_dropped, Register scratch); |
| |
| // Emit code to discard a non-negative number of pointer-sized elements |
| // from the stack, clobbering only the esp register. |
| void Drop(int element_count); |
| |
| void Call(Label* target) { call(target); } |
| |
| // Emit call to the code we are currently generating. |
| void CallSelf() { |
| Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location())); |
| call(self, RelocInfo::CODE_TARGET); |
| } |
| |
| // Move if the registers are not identical. |
| void Move(Register target, Register source); |
| |
| // Push a handle value. |
| void Push(Handle<Object> handle) { push(Immediate(handle)); } |
| |
| Handle<Object> CodeObject() { |
| ASSERT(!code_object_.is_null()); |
| return code_object_; |
| } |
| |
| |
| // --------------------------------------------------------------------------- |
| // StatsCounter support |
| |
| void SetCounter(StatsCounter* counter, int value); |
| void IncrementCounter(StatsCounter* counter, int value); |
| void DecrementCounter(StatsCounter* counter, int value); |
| void IncrementCounter(Condition cc, StatsCounter* counter, int value); |
| void DecrementCounter(Condition cc, StatsCounter* counter, int value); |
| |
| |
| // --------------------------------------------------------------------------- |
| // Debugging |
| |
| // Calls Abort(msg) if the condition cc is not satisfied. |
| // Use --debug_code to enable. |
| void Assert(Condition cc, const char* msg); |
| |
| void AssertFastElements(Register elements); |
| |
| // Like Assert(), but always enabled. |
| void Check(Condition cc, const char* msg); |
| |
| // Print a message to stdout and abort execution. |
| void Abort(const char* msg); |
| |
| // Check that the stack is aligned. |
| void CheckStackAlignment(); |
| |
| // Verify restrictions about code generated in stubs. |
| void set_generating_stub(bool value) { generating_stub_ = value; } |
| bool generating_stub() { return generating_stub_; } |
| void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; } |
| bool allow_stub_calls() { return allow_stub_calls_; } |
| void set_has_frame(bool value) { has_frame_ = value; } |
| bool has_frame() { return has_frame_; } |
| inline bool AllowThisStubCall(CodeStub* stub); |
| |
| // --------------------------------------------------------------------------- |
| // String utilities. |
| |
| // Check whether the instance type represents a flat ASCII string. Jump to the |
| // label if not. If the instance type can be scratched specify same register |
| // for both instance type and scratch. |
| void JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type, |
| Register scratch, |
| Label* on_not_flat_ascii_string); |
| |
| // Checks if both objects are sequential ASCII strings, and jumps to label |
| // if either is not. |
| void JumpIfNotBothSequentialAsciiStrings(Register object1, |
| Register object2, |
| Register scratch1, |
| Register scratch2, |
| Label* on_not_flat_ascii_strings); |
| |
| static int SafepointRegisterStackIndex(Register reg) { |
| return SafepointRegisterStackIndex(reg.code()); |
| } |
| |
| // Activation support. |
| void EnterFrame(StackFrame::Type type); |
| void LeaveFrame(StackFrame::Type type); |
| |
| // Expects object in eax and returns map with validated enum cache |
| // in eax. Assumes that any other register can be used as a scratch. |
| void CheckEnumCache(Label* call_runtime); |
| |
| private: |
| bool generating_stub_; |
| bool allow_stub_calls_; |
| bool has_frame_; |
| // This handle will be patched with the code object on installation. |
| Handle<Object> code_object_; |
| |
| // Helper functions for generating invokes. |
| void InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| const Operand& code_operand, |
| Label* done, |
| bool* definitely_mismatches, |
| InvokeFlag flag, |
| Label::Distance done_distance, |
| const CallWrapper& call_wrapper = NullCallWrapper(), |
| CallKind call_kind = CALL_AS_METHOD); |
| |
| void EnterExitFramePrologue(); |
| void EnterExitFrameEpilogue(int argc, bool save_doubles); |
| |
| void LeaveExitFrameEpilogue(); |
| |
| // Allocation support helpers. |
| void LoadAllocationTopHelper(Register result, |
| Register scratch, |
| AllocationFlags flags); |
| void UpdateAllocationTopHelper(Register result_end, Register scratch); |
| |
| // Helper for PopHandleScope. Allowed to perform a GC and returns |
| // NULL if gc_allowed. Does not perform a GC if !gc_allowed, and |
| // possibly returns a failure object indicating an allocation failure. |
| MUST_USE_RESULT MaybeObject* PopHandleScopeHelper(Register saved, |
| Register scratch, |
| bool gc_allowed); |
| |
| // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. |
| void InNewSpace(Register object, |
| Register scratch, |
| Condition cc, |
| Label* condition_met, |
| Label::Distance condition_met_distance = Label::kFar); |
| |
| // Helper for finding the mark bits for an address. Afterwards, the |
| // bitmap register points at the word with the mark bits and the mask |
| // the position of the first bit. Uses ecx as scratch and leaves addr_reg |
| // unchanged. |
| inline void GetMarkBits(Register addr_reg, |
| Register bitmap_reg, |
| Register mask_reg); |
| |
| // Helper for throwing exceptions. Compute a handler address and jump to |
| // it. See the implementation for register usage. |
| void JumpToHandlerEntry(); |
| |
| // Compute memory operands for safepoint stack slots. |
| Operand SafepointRegisterSlot(Register reg); |
| static int SafepointRegisterStackIndex(int reg_code); |
| |
| // Needs access to SafepointRegisterStackIndex for optimized frame |
| // traversal. |
| friend class OptimizedFrame; |
| }; |
| |
| |
| // The code patcher is used to patch (typically) small parts of code e.g. for |
| // debugging and other types of instrumentation. When using the code patcher |
| // the exact number of bytes specified must be emitted. Is not legal to emit |
| // relocation information. If any of these constraints are violated it causes |
| // an assertion. |
| class CodePatcher { |
| public: |
| CodePatcher(byte* address, int size); |
| virtual ~CodePatcher(); |
| |
| // Macro assembler to emit code. |
| MacroAssembler* masm() { return &masm_; } |
| |
| private: |
| byte* address_; // The address of the code being patched. |
| int size_; // Number of bytes of the expected patch size. |
| MacroAssembler masm_; // Macro assembler used to generate the code. |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Static helper functions. |
| |
| // Generate an Operand for loading a field from an object. |
| inline Operand FieldOperand(Register object, int offset) { |
| return Operand(object, offset - kHeapObjectTag); |
| } |
| |
| |
| // Generate an Operand for loading an indexed field from an object. |
| inline Operand FieldOperand(Register object, |
| Register index, |
| ScaleFactor scale, |
| int offset) { |
| return Operand(object, index, scale, offset - kHeapObjectTag); |
| } |
| |
| |
| inline Operand ContextOperand(Register context, int index) { |
| return Operand(context, Context::SlotOffset(index)); |
| } |
| |
| |
| inline Operand GlobalObjectOperand() { |
| return ContextOperand(esi, Context::GLOBAL_OBJECT_INDEX); |
| } |
| |
| |
| // Generates an Operand for saving parameters after PrepareCallApiFunction. |
| Operand ApiParameterOperand(int index); |
| |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| extern void LogGeneratedCodeCoverage(const char* file_line); |
| #define CODE_COVERAGE_STRINGIFY(x) #x |
| #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) |
| #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) |
| #define ACCESS_MASM(masm) { \ |
| byte* ia32_coverage_function = \ |
| reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \ |
| masm->pushfd(); \ |
| masm->pushad(); \ |
| masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \ |
| masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \ |
| masm->pop(eax); \ |
| masm->popad(); \ |
| masm->popfd(); \ |
| } \ |
| masm-> |
| #else |
| #define ACCESS_MASM(masm) masm-> |
| #endif |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_ |